Multi-Fidelity Multidisciplinary Design Optimization Based on Collaborative Optimization Framework

[1]  Kroo Ilan,et al.  Multidisciplinary Optimization Methods for Aircraft Preliminary Design , 1994 .

[2]  Vassili Toropov,et al.  Modelling and Approximation Strategies in Optimization — Global and Mid-Range Approximations, Response Surface Methods, Genetic Programming, Low / High Fidelity Models , 2001 .

[3]  Vassili Toropov,et al.  The use of simplified numerical models as mid-range approximations , 1996 .

[4]  Jaroslaw Sobieszczanski-Sobieski,et al.  Optimization by decomposition: A step from hierarchic to non-hierarchic systems , 1989 .

[5]  Vassili Toropov,et al.  Parameter Identification for Nonlinear Constitutive Models: Finite Element Simulation — Optimization — Nontrivial Experiments , 1993 .

[6]  Raphael T. Haftka,et al.  Analysis and design of composite curved channel frames , 1994 .

[7]  Anthony A. Giunta,et al.  Aircraft Multidisciplinary Design Optimization using Design of Experiments Theory and Response Surface Modeling Methods , 1997 .

[8]  Bernard Grossman,et al.  Variable-Complexity Multidisciplinary Design Optimization Using Parallel Computers , 1995 .

[9]  Raphael T. Haftka,et al.  CORRECTION RESPONSE SURFACE APPROXIMATIONS FOR STRESS INTENSITY FACTORS OF A COMPOSITE STIFFENED PLATE , 1998 .

[10]  N. M. Alexandrov,et al.  A trust-region framework for managing the use of approximation models in optimization , 1997 .

[11]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[12]  Sobieszczanski Jaroslaw,et al.  Bi-Level Integrated System Synthesis (BLISS) , 1998 .