Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering

[1]  Y. Sakka,et al.  High‐Strength B4C–TaB2 Eutectic Composites Obtained via In Situ by Spark Plasma Sintering , 2016 .

[2]  Y. Sakka,et al.  Room and high temperature flexural failure of spark plasma sintered boron carbide , 2016 .

[3]  Y. Sakka,et al.  High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation , 2016 .

[4]  Y. Sakka,et al.  High-temperature reactive spark plasma consolidation of TiB2–NbC ceramic composites , 2015 .

[5]  G. Hilmas,et al.  Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C , 2015 .

[6]  Y. Sakka,et al.  B6O ceramic by in-situ reactive spark plasma sintering of a B2O3 and B powder mixture , 2014 .

[7]  Y. Sakka,et al.  A dense and tough (B4C–TiB2)–B4C ‘composite within a composite’ produced by spark plasma sintering , 2014 .

[8]  O. Vasylkiv,et al.  Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping , 2013 .

[9]  Deepak N. Kapoor,et al.  Characterization and evaluation , 2013 .

[10]  Y. Sakka,et al.  Hard polycrystalline eutectic composite prepared by spark plasma sintering , 2012 .

[11]  Y. Sakka,et al.  High hardness BaCb-(BxOy/BN) composites with 3D mesh-like fine grain-boundary structure by reactive spark plasma sintering. , 2012, Journal of nanoscience and nanotechnology.

[12]  R. White,et al.  The Effects of Residual Stress Distributions on Indentation‐induced Microcracking in B4C–TiB2 Eutectic Ceramic Composites , 2011 .

[13]  K. Vanmeensel,et al.  Microstructure and mechanical properties of pulsed electric current sintered B4C-TiB2 composites , 2011 .

[14]  Y. Sakka,et al.  Microstructure and high-temperature strength of B4C-TiB2 composite prepared by a crucibleless zone melting method , 2009 .

[15]  B. Basu,et al.  Temperature dependent hardness and strength properties of TiB2 with TiSi2 sinter-aid , 2009 .

[16]  G. S. Oleinik,et al.  Temperature effect on bending strength of hot-pressed boron carbide materials , 2007 .

[17]  A. K. Suri,et al.  Processing and properties of monolithic TiB2 based materials , 2006 .

[18]  R. Steiger,et al.  Sintering and Properties of Titanium Diboride Made from Powder Synthesized in a Plasma‐Arc Heater , 2006 .

[19]  Hyoun‐Ee Kim,et al.  Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid , 2002 .

[20]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[21]  J. Groza,et al.  Sintering activation by external electrical field , 2000 .

[22]  V. Krstić,et al.  High strength-high toughness B4C-TiB2 composites , 2000 .

[23]  Zhang Jianyong,et al.  In-situ HIP synthesis of TiB2/SiC ceramic composites , 1999 .

[24]  David J. Green,et al.  Elastic properties and microcracking behavior of particulate titanium diboride-silicon carbide composites , 1997 .

[25]  Lorenz S. Sigl,et al.  Microcracking in B4C‐TiB2 Composites , 1995 .

[26]  J. Matsushita,et al.  High Temperature Strength of TiB2 Ceramics , 1993 .

[27]  M. Taya,et al.  Toughening of a particulate-reinforced/ceramic-matrix composite. Technical report , 1989 .

[28]  P. Becher,et al.  Effect of oxygen contamination on densification of TiB2 , 1987 .