Simplex and Diamond Hierarchies: Models and Applications

Hierarchical spatial decompositions are a basic modelling tool in a variety of application domains. Several papers on this subject deal with hierarchical simplicial decompositions generated through regular simplex bisection. Such decompositions, originally developed for finite elements, are extensively used as the basis for multi‐resolution models of scalar fields, such as terrains, and static or time‐varying volume data. They have also been used as an alternative to quadtrees and octrees as spatial access structures. The primary distinction among all such approaches is whether they treat the simplex or clusters of simplices, called diamonds, as the modelling primitive. This leads to two classes of data structures and to different query approaches. We present the hierarchical models in a dimension‐independent manner, and organize the description of the various applications, primarily interactive terrain rendering and isosurface extraction, according to the dimension of the domain.

[1]  Hanan Samet,et al.  Foundations of multidimensional and metric data structures , 2006, Morgan Kaufmann series in data management systems.

[2]  Valerio Pascucci,et al.  Slow Growing Subdivision (SGS) in Any Dimension: Towards Removing the Curse of Dimensionality , 2002, Comput. Graph. Forum.

[3]  Luiz Velho,et al.  Variable Resolution 4‐k Meshes: Concepts and Applications , 2000, Comput. Graph. Forum.

[4]  Rosane Minghim,et al.  The Jal triangulation: An adaptive triangulation in any dimension , 2006, Comput. Graph..

[5]  Martin Rumpf,et al.  Error indicators for multilevel visualization and computing on nested grids , 2000, Comput. Graph..

[6]  Igor Kossaczký A recursive approach to local mesh refinement in two and three dimensions , 1994 .

[7]  Thomas Gerstner Multiresolution Visualization and Compression of Global Topographic Data , 2001 .

[8]  Jonathan D. Cohen,et al.  On-the-fly decompression and rendering of multiresolution terrain , 2010, I3D '10.

[9]  D. J. Hebert,et al.  Image encoding with triangulation wavelets , 1995, Optics + Photonics.

[10]  Ronald N. Perry,et al.  Adaptively sampled distance fields: a general representation of shape for computer graphics , 2000, SIGGRAPH.

[11]  Renato Pajarola,et al.  Large scale terrain visualization using the restricted quadtree triangulation , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[12]  Joseph M. Maubach,et al.  The Efficient Location of Neighbors for Locally Refined n-Simplicial Grids , 2006 .

[13]  V. Pascucci,et al.  Time Critical Isosurface Refinement and Smoothing , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[14]  Leila De Floriani,et al.  Modeling and Visualization Approaches for Time-Varying Volumetric Data , 2008, ISVC.

[15]  Thomas Gerstner,et al.  A case study on multiresolution visualization of local rainfall from weather radar measurements , 2002, IEEE Visualization, 2002. VIS 2002..

[16]  Martin Rumpf,et al.  Adaptive Projection Operators in Multiresolution Scientific Visualization , 1998, IEEE Trans. Vis. Comput. Graph..

[17]  Leila De Floriani,et al.  Multiresolution Interval Volume Meshes , 2008, VG/PBG@SIGGRAPH.

[18]  Alex A. Pomeranz ROAM Using Surface Triangle Clusters (RUSTiC) , 2000 .

[19]  J. Bey,et al.  Tetrahedral grid refinement , 1995, Computing.

[20]  Bernd Hamann,et al.  Wavelets for Adaptively Refined -Subdivision Meshes , 2007 .

[21]  Kenneth I. Joy,et al.  Marching diamonds for unstructured meshes , 2005, VIS 05. IEEE Visualization, 2005..

[22]  J. W. Alexander,et al.  The Combinatorial Theory of Complexes , 1930 .

[23]  Renato Pajarola,et al.  Topology Control in Multiresolution Isosurface Extraction , 2005 .

[24]  Thomas Gerstner Multiresolution extraction and rendering of transparent isosurfaces , 2002, Comput. Graph..

[25]  Bernd Hamann,et al.  Wavelets for Adaptively Refined sqr(3, 2)-subdivision Meshes , 2003, Computer Graphics and Imaging.

[26]  Barry Joe,et al.  Quality Local Refinement of Tetrahedral Meshes Based on Bisection , 1995, SIAM J. Sci. Comput..

[27]  J. T. Gray,et al.  Hierarchical Large-scale Volume Representation with \(\root 3 \of 2 \) Subdivision and Trivariate B-spline Wavelets , 2004 .

[28]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997 .

[29]  Leila De Floriani,et al.  Hierarchical triangulation for multiresolution surface description , 1995, TOGS.

[30]  Valerio Pascucci,et al.  Topological Landscapes: A Terrain Metaphor for Scientific Data , 2007, IEEE Transactions on Visualization and Computer Graphics.

[31]  Renato Pajarola,et al.  Survey of semi-regular multiresolution models for interactive terrain rendering , 2007, The Visual Computer.

[32]  Paolo Cignoni,et al.  BDAM — Batched Dynamic Adaptive Meshes for High Performance Terrain Visualization , 2003, Comput. Graph. Forum.

[33]  Leila De Floriani,et al.  Selective refinement queries for volume visualization of unstructured tetrahedral meshes , 2004, IEEE Transactions on Visualization and Computer Graphics.

[34]  Valerio Pascucci,et al.  Time Critical Isosurface Refinement and Smoothing , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[35]  Leila De Floriani,et al.  Multiresolution Mesh Representation: Models and Data Structures , 2002, Tutorials on Multiresolution in Geometric Modelling.

[36]  Hanan Samet,et al.  Navigating through triangle meshes implemented as linear quadtrees , 2000, TOGS.

[37]  H. Whitney Geometric Integration Theory , 1957 .

[38]  Valerio Pascucci,et al.  Multi-dimensional and multi-resolution geometric data-structures for scientific visualization , 2000 .

[39]  Irene Gargantini,et al.  An effective way to represent quadtrees , 1982, CACM.

[40]  William Ribarsky,et al.  Real-time, continuous level of detail rendering of height fields , 1996, SIGGRAPH.

[41]  Luiz Velho,et al.  Extraction and compression of hierarchical isocontours from image data , 2006, Comput. Medical Imaging Graph..

[42]  Leila De Floriani,et al.  Diamond Hierarchies of Arbitrary Dimension , 2009, Comput. Graph. Forum.

[43]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[44]  David P. Luebke,et al.  View-dependent simplification of arbitrary polygonal environments , 1997, SIGGRAPH.

[45]  V. Pascucci,et al.  Global Static Indexing for Real-Time Exploration of Very Large Regular Grids , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[46]  Yasufumi Takama,et al.  Parallel volume segmentation with tetrahedral adaptive grid , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[47]  C. Micchelli,et al.  On the Linear Independence of Multivariate B-Splines, I. Triangulations of Simploids , 1982 .

[48]  Frank Losasso,et al.  Geometry clipmaps , 2004, ACM Trans. Graph..

[49]  Martin Rumpf,et al.  Multi-Resolutional Parallel Isosurface Extraction based on Tetrahedral Bisection , 2000, Volume Graphics.

[50]  Baining Guo Interval set: a volume rendering technique generalizing isosurface extraction , 1995, Proceedings Visualization '95.

[51]  M. Rivara,et al.  Local modification of meshes for adaptive and/or multigrid finite-element methods , 1991 .

[53]  Martin Rumpf,et al.  Hierarchical and adaptive visualization on nested grids , 1997, Computing.

[54]  D. Zorin,et al.  4-8 Subdivision , 2001 .

[55]  Peter Bastian,et al.  Parallele adaptive Mehrgitterverfahren , 1994 .

[56]  Valerio Pascucci,et al.  Interactive view-dependent rendering of large isosurfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[57]  Martin Vetterli,et al.  Efficient algorithms for embedded rendering of terrain models , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[58]  W. B. R. Lickorish Simplicial moves on complexes and manifolds , 1999 .

[59]  Hans-Peter Seidel,et al.  Real-time generation of continuous levels of detail for height fields , 1998 .

[60]  R. Nochetto,et al.  Theory of adaptive finite element methods: An introduction , 2009 .

[61]  Kenneth I. Joy,et al.  Adaptive extraction of time-varying isosurfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[62]  Yu Meng,et al.  Dmesh: Fast Depth-Image Meshing And Warping , 2004, Int. J. Image Graph..

[63]  Kenneth I. Joy,et al.  Compression and Occlusion Culling for Fast Isosurface Extraction from Massive Datasets , 2009, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration.

[64]  H. Freudenthal Simplizialzerlegungen von Beschrankter Flachheit , 1942 .

[65]  A Theorem in Combinatory Topology , 1931 .

[66]  Hiromi T. Tanaka Accuracy-Based Sampling and Reconstruction with Adaptive Meshes for Parallel Hierarchical Triangulation , 1995, Comput. Vis. Image Underst..

[67]  Jonathan D. Cohen,et al.  Level of Detail for 3D Graphics , 2012 .

[68]  David M. Mount,et al.  Pointerless Implementation of Hierarchical Simplicial Meshes and Efficient Neighbor Finding in Arbitrary Dimensions , 2007, Int. J. Comput. Geom. Appl..

[69]  Eberhard Bänsch,et al.  Local mesh refinement in 2 and 3 dimensions , 1991, IMPACT Comput. Sci. Eng..

[70]  David G. Kirkpatrick,et al.  Right-Triangulated Irregular Networks , 2001, Algorithmica.

[71]  Leila De Floriani,et al.  Supercubes: A High-Level Primitive for Diamond Hierarchies , 2009, IEEE Transactions on Visualization and Computer Graphics.

[72]  Mark A. Duchaineau,et al.  ROAMing terrain: Real-time Optimally Adapting Meshes , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[73]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[74]  Luiz Velho,et al.  Simplicial diffeomorphisms , 2010, Comput. Aided Geom. Des..

[75]  Luiz Velho,et al.  Using Semi-Regular 4–8 Meshes for Subdivision Surfaces , 2000, J. Graphics, GPU, & Game Tools.

[76]  Daniele Panozzo,et al.  RGB Subdivision , 2009, IEEE Transactions on Visualization and Computer Graphics.

[77]  Michael Thomas Lee Spatial Modeling using Triangular, Tetrahedral, and Pentatopic Decompositions , 2006 .

[78]  Günther F. Schrack,et al.  Finding neighbors of equal size in linear quadtrees and octrees in constant time , 1991, CVGIP Image Underst..

[79]  Leila De Floriani,et al.  Multiresolution Representation of Shapes Based on Cell Complexes (Invited Paper) , 1999, DGCI.

[80]  Bernd Hamann,et al.  Wavelets for adaptively refined '3rd-root-of-2'-subdivision meshes , 2003 .

[81]  Leila De Floriani,et al.  Bisection-Based Triangulations of Nested Hypercubic Meshes , 2010, IMR.

[82]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[83]  M. Todd The Computation of Fixed Points and Applications , 1976 .

[84]  V. Pascucci,et al.  Isosurface computation made simple: hardware acceleration, adaptive refinement and tetrahedral stripping , 2004, VISSYM'04.

[85]  David M. Mount,et al.  The Cost of Compatible Refinement of Simplex Decomposition Trees , 2006, IMR.

[86]  Günther Greiner,et al.  Hierarchical meshes for volume data , 1998, Proceedings. Computer Graphics International (Cat. No.98EX149).

[87]  R. Bank,et al.  Some Refinement Algorithms And Data Structures For Regular Local Mesh Refinement , 1983 .

[88]  Hanan Samet,et al.  Constant-time navigation in four-dimensional nested simplicial meshes , 2004, Proceedings Shape Modeling Applications, 2004..

[89]  Leila De Floriani,et al.  Selective Refinement on Nested Tetrahedral Meshes , 2004 .

[90]  Leila De Floriani,et al.  A multi-resolution topological representation for non-manifold meshes , 2002, SMA '02.

[91]  Jml Maubach,et al.  Space-filling curves for 2-simplicial meshes created with bisections and reflections , 2005 .

[92]  Paolo Cignoni,et al.  Planet-sized batched dynamic adaptive meshes (P-BDAM) , 2003, IEEE Visualization, 2003. VIS 2003..

[93]  Fatma Betul Atalay-Satoglu Spatial Decompositions for Geometric Interpolation and Efficient Rendering , 2004 .

[94]  Douglas N. Arnold,et al.  Locally Adapted Tetrahedral Meshes Using Bisection , 2000, SIAM J. Sci. Comput..

[95]  Yuriko Takeshima,et al.  Topological volume skeletonization using adaptive tetrahedralization , 2004, Geometric Modeling and Processing, 2004. Proceedings.

[96]  Kenneth I. Joy,et al.  Real-time optimal adaptation for planetary geometry and texture: 4-8 tile hierarchies , 2005, IEEE Transactions on Visualization and Computer Graphics.

[97]  Martin Vetterli,et al.  Computational analysis of mesh simplification using global error , 2003, Comput. Geom..

[98]  Paolo Cignoni,et al.  Adaptive tetrapuzzles: efficient out-of-core construction and visualization of gigantic multiresolution polygonal models , 2004, ACM Trans. Graph..

[99]  Gabriel Taubin,et al.  Converting sets of polygons to manifold surfaces by cutting and stitching , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[100]  Valerio Pascucci,et al.  Hierarchical Large-scale Volume Representation with V'2 Subdivision and Trivariate B-spline Wavelets , 2004 .

[101]  C. T. Traxler,et al.  An algorithm for adaptive mesh refinement inn dimensions , 1997, Computing.

[102]  Leila De Floriani,et al.  Isodiamond Hierarchies: An Efficient Multiresolution Representation for Isosurfaces and Interval Volumes , 2010, IEEE Transactions on Visualization and Computer Graphics.

[103]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[104]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000 .

[105]  Hanan Samet,et al.  Foundations of Multidimensional and Metric Data Structures (The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling) , 2005 .

[106]  Luiz Velho,et al.  Simplicial Isosurface Compression , 2004, VMV.

[107]  Renato Pajarola,et al.  QuadTIN: quadtree based triangulated irregular networks , 2002, IEEE Visualization, 2002. VIS 2002..

[108]  Valerio Pascucci,et al.  Terrain Simplification Simplified: A General Framework for View-Dependent Out-of-Core Visualization , 2002, IEEE Trans. Vis. Comput. Graph..

[109]  Arthur W. Toga,et al.  Surface mapping brain function on 3D models , 1990, IEEE Computer Graphics and Applications.

[110]  Günther Greiner,et al.  Hierarchical tetrahedral-octahedral subdivision for volume visualization , 2000, The Visual Computer.

[111]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[112]  Alan H. Barr,et al.  Accurate triangulations of deformed, intersecting surfaces , 1987, SIGGRAPH.

[113]  Thomas Gerstner Top-Down View-Dependent Terrain Triangulation using the Octagon Metric , 2003 .

[114]  Yasufumi Takama,et al.  Accuracy-based sampling and reconstruction with adaptive grid for parallel hierarchical tetrahedrization , 2003, VG.

[115]  Harold W. Kuhn,et al.  Some Combinatorial Lemmas in Topology , 1960, IBM J. Res. Dev..

[116]  Leila De Floriani,et al.  Algorithms for Visibility Computation on Terrains: A Survey , 2003 .

[117]  Luiz Velho,et al.  4-8 Subdivision , 2001, Comput. Aided Geom. Des..

[118]  Leila De Floriani,et al.  A Formal Approach to Multiresolution Hypersurface Modeling , 1997, Geometric Modeling.

[119]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[120]  Delma J. Hebert Cyclic Interlaced Quadtree Algorithms for Quincunx Multiresolution , 1998, J. Algorithms.

[121]  B. V. Herzen Applications of Surface Networks to Sampling Problems in Computer Graphics , 1988 .

[122]  G. Carey,et al.  Local refinement of simplicial grids based on the skeleton , 2000 .

[123]  Jürgen Bey,et al.  Simplicial grid refinement: on Freudenthal's algorithm and the optimal number of congruence classes , 2000, Numerische Mathematik.

[124]  Jihad El-Sana,et al.  Adaptive Real-Time Level-of-Detail-Based Rendering for Polygonal Models , 1997, IEEE Trans. Vis. Comput. Graph..

[125]  Renato Pajarola,et al.  Scalable Parallel Out-of-core Terrain Rendering , 2010, EGPGV@Eurographics.

[126]  Thomas Gerstner Multiresolution Compression and Visualization of Global Topographic Data , 2003, GeoInformatica.

[127]  Paolo Cignoni,et al.  C‐BDAM – Compressed Batched Dynamic Adaptive Meshes for Terrain Rendering , 2006, Comput. Graph. Forum.

[128]  David C. Banks,et al.  Complex-valued contour meshing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[129]  Renato Pajarola,et al.  HyperBlock-QuadTIN: Hyper-Block Quadtree based Triangulated Irregular Networks , 2003 .

[130]  Leila De Floriani,et al.  Sparse terrain pyramids , 2008, GIS '08.

[131]  Jonathan Blow Terrain Rendering at High Levels of Detail , 2004 .

[132]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[133]  Gabriel Taubin,et al.  Estimating the in/out function of a surface represented by points , 2003, SM '03.

[134]  Gregory M. Nielson,et al.  Tetrahedron based, least squares, progressive volume models with application to freehand ultrasound data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[135]  M. Rivara Algorithms for refining triangular grids suitable for adaptive and multigrid techniques , 1984 .

[136]  Enrico Puppo,et al.  Variable resolution triangulations , 1998, Comput. Geom..

[137]  Valerio Pascucci,et al.  A progressive subdivision paradigm (PSP) , 2004, IS&T/SPIE Electronic Imaging.

[138]  C. Zong What is known about unit cubes , 2005 .

[139]  Delma J. Hebert Symbolic Local Refinement of Tetrahedral Grids , 1994, J. Symb. Comput..

[140]  Deborah Greaves,et al.  Hierarchical tree-based finite element mesh generation , 1999 .

[141]  Patrick Scott Mara,et al.  Triangulations for the Cube , 1976, J. Comb. Theory A.

[142]  Joseph M. Maubach,et al.  Local bisection refinement for $n$-simplicial grids generated by reflection , 2017 .

[143]  Hiroshi Sato,et al.  Interval volume: a solid fitting technique for volumetric data display and analysis , 1995, Proceedings Visualization '95.

[144]  Joshua Levenberg,et al.  Fast view-dependent level-of-detail rendering using cached geometry , 2002, IEEE Visualization, 2002. VIS 2002..

[145]  Hanan Samet,et al.  Constant-time neighbor finding in hierarchical tetrahedral meshes , 2001, Proceedings International Conference on Shape Modeling and Applications.

[146]  Hong Qin,et al.  A unified subdivision approach for multi-dimensional non-manifold modeling , 2006, Comput. Aided Des..

[147]  Jean-Michel Dischler,et al.  3D ROAM for scalable volume visualization , 2004, 2004 IEEE Symposium on Volume Visualization and Graphics.

[148]  W. Mitchell Adaptive refinement for arbitrary finite-element spaces with hierarchical bases , 1991 .

[149]  Arie E. Kaufman,et al.  Multiresolution tetrahedral framework for visualizing regular volume data , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[150]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[151]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .