A family of adapted complexifications for noncompact semisimple Lie groups

The maximal complexifications adapted to the Levi Civita connection for a distinguished one-parameter family of left-invariant metrics on a real semisimple Lie group G are determined. For G = SL(2,R) their realizations as invariant Riemann domains into SL(2,C) are carried out and their complex-geometric properties are investigated.

[1]  A. Iannuzzi,et al.  On univalence of equivariant Riemann domains over the complexification of a non-compact, Riemannian symmetric space , 2006, math/0612169.

[2]  Róbert Szőke,et al.  Canonical complex structures associated to connections and complexifications of Lie groups , 2004 .

[3]  S. Halverscheid,et al.  Maximal complexifications of certain homogeneous Riemannian manifolds , 2003 .

[4]  R. Bielawski Complexification and Hypercomplexification of Manifolds with a Linear Connection , 2002, math/0212175.

[5]  J. Wolf,et al.  Cycle Spaces of Flag Domains: A Complex Geometric Viewpoint , 2002, math/0210445.

[6]  G. Fels Pseudo-Kählerian structure on domains over a complex semisimple Lie group , 2002 .

[7]  R. Hind,et al.  The geometry of Grauert tubes and complexification of symmetric spaces , 2001, math/0109186.

[8]  R. M. Aguilar Symplectic Reduction and the Homogeneous Complex Monge–Ampère Equation , 2001 .

[9]  A. Iannuzzi,et al.  Integration of local actions on holomorphic fiber spaces , 1997, Nagoya Mathematical Journal.

[10]  Lieven Vanhecke,et al.  Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces , 1995 .

[11]  P. Heinzner Geometric invariant theory on Stein spaces , 1991 .

[12]  P. Wong,et al.  Stein manifolds with compact symmetric center , 1991 .

[13]  L. Lempert,et al.  Global solutions of the homogeneous complex Monge-Ampère equation and complex structures on the tangent bundle of Riemannian manifolds , 1991 .

[14]  R. Szöke Complex structures on tangent bundles of Riemannian manifolds. , 1991 .

[15]  D. Akhiezer,et al.  On Stein extensions of real symmetric spaces , 1990 .

[16]  Carolyn S. Gordon Naturally Reductive Homogeneous Riemannian Manifolds , 1985, Canadian Journal of Mathematics.

[17]  M. Field Several complex variables and complex manifolds , 1982 .

[18]  G. Mostow On Covariant Fiberings of Klein Spaces , 1955 .

[19]  S. Halverscheid,et al.  On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ , 2006 .

[20]  S. Halverscheid,et al.  On naturally reductive left-invariant metrics of ${\rm SL}(2,\mathbb {R})$ , 2006 .

[21]  Ralph J. Bremigan Pseudokähler forms on complex Lie groups , 2000, Documenta Mathematica.

[22]  Róbert Szőke,et al.  Adapted complex structures and Riemannian homogeneous spaces , 1998 .

[23]  Pengcheng Zhao Invariant Stein domains : a contribution to the program of Gelfand and Gindikin , 1996 .

[24]  V. Guillemin,et al.  Grauert tubes and the homogeneous Monge-Ampère equation , 1991 .

[25]  Róbert Szőke,et al.  Complex structures on tangent bundles of Riemannian manifolds , 1991 .

[26]  W. Stoll The characterization of strictly parabolic manifolds , 1980 .

[27]  W. Ziller,et al.  Naturally reductive metrics and Einstein metrics on compact Lie groups , 1979 .

[28]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .