TROD: Tracking with occlusion handling and drift correction

We present a tracking framework in which we learn a HOG-based object detector in the first video frame and use this detector to localize the object in subsequent frames. We contribute and improve the tracking on the three following points. First, an occlusion-handling algorithm exploits discriminative information from the detector by dividing the object bounding box into patches and comparing each patch to the object model. Second, a drift-correction technique uses descriptive information of the object by calculating the similarity between the object in the previous frame and its shifted versions in the current frame. Third, a stochastic learning algorithm updates the object detector using single object and single background samples for selected frames only. Experiments with benchmark sequences show that the proposed tracker outperforms state-of-the-art methods on several sequences and has the smallest average location error.

[1]  Zdenek Kalal,et al.  Tracking-Learning-Detection , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Ang Li,et al.  Discriminative Nonorthogonal Binary Subspace Tracking , 2010, ECCV.

[3]  Horst Bischof,et al.  Semi-supervised On-Line Boosting for Robust Tracking , 2008, ECCV.

[4]  Takahiro Ishikawa,et al.  The template update problem , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[6]  Horst Bischof,et al.  PROST: Parallel robust online simple tracking , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[7]  Peter H. N. de With,et al.  Fast Training of Object Detection Using Stochastic Gradient Descent , 2010, 2010 20th International Conference on Pattern Recognition.

[8]  Robert T. Collins,et al.  On-the-fly Object Modeling while Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Ramakant Nevatia,et al.  Multi-target tracking by on-line learned discriminative appearance models , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[11]  Jiri Matas,et al.  P-N learning: Bootstrapping binary classifiers by structural constraints , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Junseok Kwon,et al.  Visual tracking decomposition , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[16]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[17]  Stanley T. Birchfield,et al.  Elliptical head tracking using intensity gradients and color histograms , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[18]  Roberto Cipolla,et al.  MCBoost: Multiple Classifier Boosting for Perceptual Co-clustering of Images and Visual Features , 2008, NIPS.

[19]  Ivan Laptev,et al.  Improving object detection with boosted histograms , 2009, Image Vis. Comput..

[20]  Ren C. Luo,et al.  Hybrid discriminative visual object tracking with confidence fusion for robotics applications , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[22]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[23]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.