Resonant optical transmission through hole‐arrays in metal films: physics and applications

Extraordinary optical transmission through an array of holes in a metal film was reported by Ebbesen and coworkers in 1998. Since that work there has been abundant research activity aimed at understanding the physics and at the development of the many applications associated with this phenomenon, hence the topic of this review. The study of hole‐arrays in a metal is not new – theoretical contributions on a small‐hole array date back to Lord Rayleigh's description of Wood's anomaly in 1907 and there has been considerable research on metal meshes and hole‐arrays since 1962. Bethe's theory, adapted to treat hole‐arrays, is the simplest theoretical description of the transmission resonance. Following a description of this basic theory, we present the research on the additional effects from variations in real metal properties at different wavelengths, film thickness, hole‐shape and lattice configuration. The many promising applications being developed using hole‐arrays are examined, including polarization control, filtering, switching, nonlinear optics, surface plasmon resonance sensing, surface‐enhanced fluorescence, surface‐enhanced Raman scattering, absorption spectroscopy, and quantum interactions. Finally, the various approaches, developments in hole‐array fabrication, and integration of hole‐arrays into devices are described.

[1]  David Sinton,et al.  Nanoholes as nanochannels: flow-through plasmonic sensing. , 2009, Analytical chemistry.

[2]  David Sinton,et al.  Attomolar protein detection using in-hole surface plasmon resonance. , 2009, Journal of the American Chemical Society.

[3]  R. Gordon,et al.  Enhanced Raman Scattering from Nanoholes in a Copper Film , 2008 .

[4]  J. Lakowicz,et al.  Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. , 2008, The Analyst.

[5]  J. Hogle,et al.  Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes. , 2008, Nano letters.

[6]  K. Kavanagh,et al.  A new generation of sensors based on extraordinary optical transmission. , 2008, Accounts of chemical research.

[7]  Weili Zhang Resonant terahertz transmission in plasmonic arrays of subwavelength holes , 2008 .

[8]  R. Gordon,et al.  Enhanced Second Harmonic Generation From Noncentrosymmetric Nanohole Arrays in a Gold Film , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  David Sinton,et al.  Polarization-dependent sensing of a self-assembled monolayer using biaxial nanohole arrays , 2008 .

[10]  John A Rogers,et al.  Seeing molecules by eye: surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. , 2008, Angewandte Chemie.

[11]  Transmittance and transparency of subwavelength-perforated conducting films in the presence of a magnetic field , 2008 .

[12]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[13]  J. V. Coe,et al.  Extraordinary transmission of metal films with arrays of subwavelength holes. , 2008, Annual review of physical chemistry.

[14]  J. Masson,et al.  Anomalies in the disappearance of the extraordinary electromagnetic transmission in subwavelength hole arrays. , 2008, Optics express.

[15]  D. Larson,et al.  High-throughput nanohole array based system to monitor multiple binding events in real time. , 2008, Analytical chemistry.

[16]  Nemanya Sedoglavich,et al.  Gold nanohole array substrates as immunobiosensors. , 2008, Analytical chemistry.

[17]  Luis Martín-Moreno,et al.  Influence of material properties on extraordinary optical transmission through hole arrays , 2008 .

[18]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[19]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[20]  Hyungsoon Im,et al.  Laser-illuminated nanohole arrays for multiplex plasmonic microarray sensing. , 2008, Optics express.

[21]  D. Sinton,et al.  Nanohole arrays in metal films as optofluidic elements: progress and potential , 2008 .

[22]  Wayne Dickson,et al.  Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. , 2008, Nano letters.

[23]  D. Ginger,et al.  A direct-write single-step positive etch resist for dip-pen nanolithography. , 2007, Small.

[24]  Teri W Odom,et al.  Microscale arrays of nanoscale holes. , 2007, Small.

[25]  Borja Sepúlveda,et al.  Optical antennas based on coupled nanoholes in thin metal films , 2007 .

[26]  R. Gordon,et al.  Polarization-controlled diffraction from a quasicrystal nanohole array in a gold film , 2007 .

[27]  J. Dadap,et al.  Polarization-tunable plasmon-enhanced extraordinary transmission through metallic films using asymmetric cruciform apertures. , 2007, Optics letters.

[28]  Sumeet Mahajan,et al.  Reproducible SERRS from structured gold surfaces. , 2007, Physical chemistry chemical physics : PCCP.

[29]  F. García-Vidal,et al.  Theory of light transmission through an array of rectangular holes , 2007 .

[30]  Reuven Gordon Bethe's aperture theory for arrays , 2007 .

[31]  D. Ueda,et al.  Polarization Control of Vertical-Cavity Surface-Emitting Lasers by Utilizing Surface Plasmon Resonance , 2007, IEEE Journal of Quantum Electronics.

[32]  Katherine E. Cilwa,et al.  Metal Films with Arrays of Tiny Holes: Spectroscopy with Infrared Plasmonic Scaffolding , 2007 .

[33]  Shaochen Chen,et al.  Tunable transmission at 100 THz through a metallic hole array with a varying hole channel shape. , 2007, Optics express.

[34]  X. Jiao,et al.  Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement. , 2007, Optics express.

[35]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[36]  R. Gordon,et al.  Plasmonic Bragg reflectors for enhanced extraordinary optical transmission through nano-hole arrays in a gold film. , 2007, Optics express.

[37]  J. Lakowicz,et al.  Imaging three-dimensional light propagation through periodic nanohole arrays using scanning aperture microscopy. , 2007, Applied physics letters.

[38]  Ajay Nahata,et al.  Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays , 2007 .

[39]  X Wang,et al.  Optical transmission through hexagonal arrays of subwavelength holes in thin metal films. , 2007, Nano letters.

[40]  Teri W Odom,et al.  Multiscale patterning of plasmonic metamaterials. , 2007, Nature nanotechnology.

[41]  S. Blair,et al.  Modeling Fluorescence Enhancement from Metallic Nanocavities , 2007 .

[42]  Sang-Hyun Oh,et al.  Periodic modulation of extraordinary optical transmission through subwavelength hole arrays using surrounding Bragg mirrors , 2007 .

[43]  Tzu-Hung Chuang,et al.  Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice , 2007 .

[44]  J. V. Coe,et al.  Extraordinary Infrared Transmission Resonances of Metal Microarrays for Sensing Nanocoating Thickness , 2007 .

[45]  Bo Zhang,et al.  Surface-plasmon-enhanced transmission through metallic film perforated with fractal-featured aperture array , 2007 .

[46]  You-Chia Chang,et al.  Near-field observation of plasmon excitation and propagation on ordered elliptical hole arrays , 2007 .

[47]  David N. Jamieson,et al.  Extraordinary optical transmission with coaxial apertures , 2007 .

[48]  Hyungsoon Im,et al.  Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors , 2007 .

[49]  G. Shvets,et al.  Mid-infrared metamaterial based on perforated SiC membrane: engineering optical response using surface phonon polaritons , 2007 .

[50]  A. Jin,et al.  Enhanced near-infrared transmission through periodic H-shaped arrays , 2007 .

[51]  M. J. Lockyear,et al.  Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays , 2007 .

[52]  Gibum Kim,et al.  SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. , 2007, Biomaterials.

[53]  D. Sinton,et al.  On-chip surface-based detection with nanohole arrays. , 2007, Analytical chemistry.

[54]  G. Guo,et al.  Polarization properties of subwavelength hole arrays consisting of rectangular holes , 2007, 0704.0854.

[55]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.

[56]  R. Gordon,et al.  Optical transmission properties and enhanced loss for randomly positioned apertures in a metal film , 2007 .

[57]  A. V. Kats,et al.  Excitation of surface plasmon-polaritons in metal films with double periodic modulation: anomalous optical effects , 2007, cond-mat/0703093.

[58]  Di Gao,et al.  Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes , 2007 .

[59]  Yakov M. Strelniker,et al.  Theory of optical transmission through elliptical nanohole arrays , 2007, cond-mat/0702032.

[60]  Thomas H. Reilly,et al.  Quantitative evaluation of plasmon enhanced Raman scattering from nanoaperture arrays , 2007 .

[61]  Alexandre G. Brolo,et al.  Apex-Enhanced Raman Spectroscopy Using Double-Hole Arrays in a Gold Film , 2007 .

[62]  R. Gordon,et al.  Apex-enhanced second-harmonic generation by using double-hole arrays in a gold film , 2007 .

[63]  T. Ebbesen,et al.  Light in tiny holes , 2007, Nature.

[64]  G. Guo,et al.  Influence of unsymmetrical periodicity on extraordinary transmission through periodic arrays of subwavelength holes , 2006, physics/0611286.

[65]  N. Zheludev,et al.  Focusing of light by a nanohole array , 2006, physics/0611056.

[66]  F. García-Vidal,et al.  Theory of extraordinary transmission of light through quasiperiodic arrays of subwavelength holes. , 2006, Physical review letters.

[67]  Yong-Hong Ye,et al.  Role of shape in middle-infrared transmission enhancement through periodically perforated metal films. , 2004, Optics letters.

[68]  J. V. Coe,et al.  Extraordinary infrared transmission of a stack of two metal micromeshes , 2007 .

[69]  A. Roberts,et al.  Resonance and extraordinary transmission in annular aperture arrays. , 2006, Optics express.

[70]  Michael I. Haftel,et al.  Enhanced transmission with coaxial nanoapertures: Role of cylindrical surface plasmons , 2006 .

[71]  Masanori Hangyo,et al.  Strong optical activity in chiral metamaterials of metal screw hole arrays , 2006 .

[72]  F. Baida,et al.  Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes , 2006 .

[73]  R. Gordon,et al.  Overlapping Double-Hole Nanostructure in a Metal Film for Localized Field Enhancement , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[74]  Si‐Chen Lee,et al.  High performance midinfrared narrow-band plasmonic thermal emitter , 2006 .

[75]  Nikolay I. Zheludev,et al.  Focusing of Light by a Nano-Hole Array , 2006 .

[76]  S Enoch,et al.  Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. , 2006, Physical review letters.

[77]  P. Sheng,et al.  Microwave transmission through metallic hole arrays: Surface electric field measurements , 2006 .

[78]  T. Ebbesen,et al.  Enhanced transmission through Penrose subwavelength hole arrays , 2006 .

[79]  P. Moyer,et al.  Transmission characteristics of metallic equilateral triangular nanohole arrays , 2006 .

[80]  D. Qiu,et al.  Hole-Enhanced Raman Scattering , 2006, Applied spectroscopy.

[81]  Weili Zhang,et al.  Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays. , 2006, Optics letters.

[82]  A. Borisov,et al.  Trapped electromagnetic modes and scaling in the transmittance of perforated metal films. , 2006, Physical review letters.

[83]  Teri W Odom,et al.  Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays. , 2006, Nano letters.

[84]  Philippe Lalanne,et al.  Interaction between optical nano-objects at metallo-dielectric interfaces , 2006 .

[85]  A. Jin,et al.  Effect of the subwavelength hole symmetry on the enhanced optical transmission through metallic films , 2006 .

[86]  Irina Puscasu,et al.  Theory of subwavelength hole arrays coupled with photonic crystals for extraordinary thermal emission , 2006 .

[87]  D. Stroud,et al.  Control of extraordinary light transmission through perforated metal films using liquid crystals , 2006 .

[88]  Reuven Gordon,et al.  Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film , 2006 .

[89]  R. Gordon,et al.  Double nanohole apex-enhanced transmission in metal films , 2006 .

[90]  M. Qiu,et al.  Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. , 2006, Physical review letters.

[91]  R. Corn,et al.  Creating advanced multifunctional biosensors with surface enzymatic transformations. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[92]  T. Ebbesen,et al.  Molecule–Surface Plasmon Interactions in Hole Arrays: Enhanced Absorption, Refractive Index Changes, and All‐Optical Switching , 2006 .

[93]  Y. Fainman,et al.  High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance. , 2006, Optics letters.

[94]  T. Ebbesen,et al.  Optical transmission in perforated noble and transition metal films , 2006 .

[95]  R. Gordon,et al.  Resonant light transmission through a nanohole in a metal film , 2006, IEEE Transactions on Nanotechnology.

[96]  M. D. Cooper,et al.  Surface plasmon-quantum dot coupling from arrays of nanoholes. , 2006, The journal of physical chemistry. B.

[97]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[98]  H. J. Lezec,et al.  The optical response of nanostructured surfaces and the composite diffracted evanescent wave model , 2006 .

[99]  John Ballato,et al.  Polarization-dependent transmission through subwavelength anisotropic aperture arrays. , 2006, Optics express.

[100]  J. Masson,et al.  Coupling between surface plasmons in subwavelength hole arrays , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[101]  G. Guo,et al.  Spatial mode properties of plasmon-assisted transmission. , 2006, Optics letters.

[102]  J. V. Coe,et al.  Extraordinary IR transmission with metallic arrays of subwavelength holes. , 2006, Analytical chemistry.

[103]  M. J. Lockyear,et al.  Waveguide arrays as plasmonic metamaterials: transmission below cutoff. , 2006, Physical review letters.

[104]  Q-Han Park,et al.  Shape resonance omni-directional terahertz filters with near-unity transmittance. , 2006, Optics express.

[105]  Patrik Hoffmann,et al.  Super-transmission of light through subwavelength annular aperture arrays in metallic films: Spectral analysis and near-field optical images in the visible range , 2006 .

[106]  L. Martín-Moreno,et al.  How light emerges from an illuminated array of subwavelength holes , 2006 .

[107]  T. Odom,et al.  Large-area nanoscale patterning: chemistry meets fabrication. , 2006, Accounts of chemical research.

[108]  J. Homola Surface plasmon resonance based sensors , 2006 .

[109]  Subwavelength Hole Arrays with Nanoapertures Fabricated by Scanning Probe Nanolithography , 2006 .

[110]  Changtao Wang,et al.  Surface plasmon polariton propagation and combination in Y-shaped metallic channels. , 2005, Optics express.

[111]  S. Blair,et al.  Enhanced fluorescence transduction properties of metallic nanocavity arrays , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[112]  Shanhui Fan,et al.  Propagating modes in subwavelength cylindrical holes , 2005 .

[113]  Ajay Nahata,et al.  Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures. , 2005, Optics express.

[114]  A. V. Kats,et al.  Polarization properties of a periodically-modulated metal film in regions of anomalous optical transparency , 2005 .

[115]  George C Schatz,et al.  Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography. , 2005, The journal of physical chemistry. B.

[116]  Joshua LaBaer,et al.  Emerging tools for real‐time label‐free detection of interactions on functional protein microarrays , 2005, The FEBS journal.

[117]  Ampere A Tseng,et al.  Recent developments in nanofabrication using focused ion beams. , 2005, Small.

[118]  Jason Riordon,et al.  Enhanced fluorescence from arrays of nanoholes in a gold film. , 2005, Journal of the American Chemical Society.

[119]  H. Kurz,et al.  All-optical switching of the transmission of electromagnetic radiation through subwavelength apertures. , 2005, Optics letters.

[120]  Hervé Rigneault,et al.  Enhancement of single-molecule fluorescence detection in subwavelength apertures. , 2005, Physical review letters.

[121]  George C Schatz,et al.  Surface plasmon standing waves in large-area subwavelength hole arrays. , 2005, Nano letters.

[122]  P. Stark,et al.  Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology. , 2005, Methods.

[123]  Qian-jin Wang,et al.  Enhanced optical transmission through metal films with rotation-symmetrical hole arrays , 2005 .

[124]  Shanhui Fan,et al.  Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes , 2005 .

[125]  J. P. Woerdman,et al.  Analytic model of optical depolarization in square and hexagonal nanohole arrays , 2005 .

[126]  Viktor Malyarchuk,et al.  High performance plasmonic crystal sensor formed by soft nanoimprint lithography. , 2005, Optics express.

[127]  Stefan Enoch,et al.  Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory , 2005 .

[128]  J. Sáenz,et al.  Full transmission through perfect-conductor subwavelength hole arrays. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[129]  F. Miyamaru,et al.  Strong enhancement of terahertz transmission for a three-layer heterostructure of metal hole arrays , 2005 .

[130]  F. Baida,et al.  Annular aperture arrays: study in the visible region of the electromagnetic spectrum. , 2005, Optics letters.

[131]  K. Kavanagh,et al.  Basis and lattice polarization mechanisms for light transmission through nanohole arrays in a metal film. , 2005, Nano letters.

[132]  Yong-Hong Ye,et al.  Enhanced light transmission through cascaded metal films perforated with periodic hole arrays. , 2005, Optics letters.

[133]  K. Malloy,et al.  Enhanced mid-infrared transmission through nanoscale metallic coaxial-aperture arrays. , 2005, Optics express.

[134]  J. Sáenz,et al.  Electromagnetic surface modes in structured perfect-conductor surfaces. , 2005, Physical review letters.

[135]  M. Tani,et al.  Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal. , 2005, Optics express.

[136]  W. Barnes,et al.  Fluorescence in the presence of metallic hole arrays , 2005 .

[137]  Eiichi Sano,et al.  Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays. , 2005, Optics letters.

[138]  F. García-Vidal,et al.  Transmission of light through a single rectangular hole. , 2005, Physical review letters.

[139]  Reuven Gordon,et al.  Increased cut-off wavelength for a subwavelength hole in a real metal. , 2005, Optics express.

[140]  Mikael Käll,et al.  Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. , 2005, Journal of the American Chemical Society.

[141]  Y. Fainman,et al.  Excitation and direct imaging of surface plasmon polariton modes in a two-dimensional grating , 2005 .

[142]  G. Whitesides,et al.  New approaches to nanofabrication: molding, printing, and other techniques. , 2005, Chemical reviews.

[143]  H. Kurz,et al.  Transmission of THz radiation through InSb gratings of subwavelength apertures. , 2005, Optics express.

[144]  Thomas W. Ebbesen,et al.  The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures , 2005 .

[145]  Steve Blair,et al.  Second-harmonic generation from an array of sub-wavelength metal apertures , 2005 .

[146]  K. Malloy,et al.  Enhanced infrared transmission through subwavelength coaxial metallic arrays. , 2005, Physical review letters.

[147]  J. P. Woerdman,et al.  Polarization tomography of metallic nanohole arrays. , 2004, Optics letters.

[148]  Xianfan Xu,et al.  Radiation transfer through nanoscale apertures , 2005 .

[149]  Franciscus B. Segerink,et al.  Influence of hole size on the extraordinary transmission through subwavelength hole arrays , 2004 .

[150]  D. Grischkowsky,et al.  Observation of a new type of THz resonance of surface plasmons propagating on metal-film hole arrays. , 2004, Physical review letters.

[151]  J. V. Coe,et al.  Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures. , 2004, The Journal of chemical physics.

[152]  C. Ropers,et al.  Femtosecond light pulse propagation through metallic nanohole arrays: The role of the dielectric substrate. , 2004, Optics express.

[153]  F. García-Vidal,et al.  Resonant transmission of light through finite chains of subwavelength holes in a metallic film. , 2004, Physical review letters.

[154]  Alexandre G. Brolo,et al.  Nanohole-Enhanced Raman Scattering , 2004 .

[155]  Thomas W. Ebbesen,et al.  Optical transmission properties of a single subwavelength aperture in a real metal , 2004 .

[156]  James V. Coe,et al.  Extraordinary infrared transmission of Cu-coated arrays with subwavelength apertures: Hole size and the transition from surface plasmonto waveguide transmission , 2004 .

[157]  Ajay Nahata,et al.  Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. , 2004, Optics express.

[158]  Henri Lezec,et al.  Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. , 2004, Optics express.

[159]  J. Pendry,et al.  Mimicking Surface Plasmons with Structured Surfaces , 2004, Science.

[160]  J. V. Coe,et al.  Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy , 2004 .

[161]  Steve Blair,et al.  Biosensing based upon molecular confinement in metallic nanocavity arrays , 2004, Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004..

[162]  Heinrich Kurz,et al.  Optimization of enhanced terahertz transmission through arrays of subwavelength apertures , 2004 .

[163]  David Klenerman,et al.  An addressable antibody nanoarray produced on a nanostructured surface. , 2004, Journal of the American Chemical Society.

[164]  K. Kavanagh,et al.  Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[165]  N. V. van Hulst,et al.  Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. , 2004, Physical review letters.

[166]  W. A. Murray,et al.  Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array , 2004 .

[167]  Weili Zhang,et al.  Terahertz transmission properties of thin, subwavelength metallic hole arrays. , 2004, Optics letters.

[168]  Masanori Hangyo,et al.  Finite size effect of transmission property for metal hole arrays in subterahertz region , 2004 .

[169]  Ajay Nahata,et al.  Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures. , 2004, Optics express.

[170]  W. A. Murray,et al.  Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film. , 2004, Physical review letters.

[171]  E. Popov,et al.  Enhanced transmission due to nonplasmon resonances in one- and two-dimensional gratings. , 2004, Applied optics.

[172]  K. Kavanagh,et al.  Strong polarization in the optical transmission through elliptical nanohole arrays. , 2004, Physical review letters.

[173]  F. García-Vidal,et al.  Enhanced millimeter-wave transmission through subwavelength hole arrays. , 2003, Optics letters.

[174]  H. Kurz,et al.  Enhanced transmission of THz radiation through subwavelength holes , 2003 .

[175]  Michael Sarrazin,et al.  Polarization effects in metallic films perforated with a bidimensional array of subwavelength rectangular holes , 2003, physics/0311015.

[176]  J. V. Coe,et al.  Accessing Surface Plasmons with Ni Microarrays for Enhanced IR Absorption by Monolayers , 2003 .

[177]  J. P. Woerdman,et al.  Fano-type interpretation of red shifts and red tails in hole array transmission spectra , 2003, physics/0401054.

[178]  Q-Han Park,et al.  Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures. , 2003, Physical review letters.

[179]  F. Baida,et al.  Light transmission by subwavelength square coaxial aperture arrays in metallic films. , 2003, Optics express.

[180]  Fadi Issam Baida,et al.  Three-dimensional structures for enhanced transmission through a metallic film: Annular aperture arrays , 2003 .

[181]  Steve Blair,et al.  Fluorescence enhancement from an array of subwavelength metal apertures. , 2003, Optics letters.

[182]  J. Vigoureux,et al.  Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes , 2003, physics/0311013.

[183]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[184]  J. Vigneron,et al.  Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[185]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[186]  Richard O'Kennedy,et al.  The Development of Novel Miniaturized Immuno-sensing Devices: A Review of a Small Technology with a Large Future , 2003 .

[187]  J. P. Woerdman,et al.  Polarization analysis of propagating surface plasmons in a subwavelength hole array , 2002, physics/0208033.

[188]  Haw Yang,et al.  Probing single-molecule dynamics photon by photon , 2002 .

[189]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[190]  H. Lezec,et al.  Effects of hole depth on enhanced light transmission through subwavelength hole arrays , 2002 .

[191]  Q-Han Park,et al.  Light emission from the shadows: Surface plasmon nano-optics at near and far fields , 2002 .

[192]  Michel Neviere,et al.  Enhanced light transmission by hole arrays , 2002 .

[193]  Fadi Issam Baida,et al.  Light transmission by subwavelength annular aperture arrays in metallic films , 2002 .

[194]  J. P. Woerdman,et al.  Plasmon-assisted transmission of entangled photons , 2002, Nature.

[195]  G. Whitesides,et al.  Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. , 2002, Accounts of chemical research.

[196]  P. Lalanne,et al.  Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits. , 2002, Physical review letters.

[197]  Michael Treacy,et al.  Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings , 2002 .

[198]  J. Pendry,et al.  Evanescently coupled resonance in surface plasmon enhanced transmission , 2001 .

[199]  A. Zayats,et al.  Near-field distribution of optical transmission of periodic subwavelength holes in a metal film. , 2001, Physical review letters.

[200]  J. Pendry,et al.  Theory of extraordinary optical transmission through subwavelength hole arrays. , 2000, Physical review letters.

[201]  Thomas W. Ebbesen,et al.  Fornel, Frédérique de , 2001 .

[202]  Stefan Enoch,et al.  Theory of light transmission through subwavelength periodic hole arrays , 2000 .

[203]  Thomas W. Ebbesen,et al.  Crucial role of metal surface in enhanced transmission through subwavelength apertures , 2000 .

[204]  Thomas W. Ebbesen,et al.  Strongly enhanced optical transmission through subwavelength holes in metal films , 2000 .

[205]  Thomas W. Ebbesen,et al.  Surface-plasmon-enhanced transmission through hole arrays in Cr films , 1999 .

[206]  R. Dasari,et al.  Ultrasensitive chemical analysis by Raman spectroscopy. , 1999, Chemical reviews.

[207]  Yakov M. Strelniker,et al.  Optical transmission through metal films with a subwavelength hole array in the presence of a magnetic field , 1999 .

[208]  Thomas W. Ebbesen,et al.  Surface plasmons enhance optical transmission through subwavelength holes , 1998 .

[209]  T. Chinowsky,et al.  Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films , 1998 .

[210]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[211]  Ross C. McPhedran,et al.  Bandpass Grids With Annular Apertures , 1987, Optics & Photonics.

[212]  M Isaacson,et al.  Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications. , 1986, Biophysical journal.

[213]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[214]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .

[215]  R. McPhedran,et al.  Diffraction properties of a bandpass grid , 1983 .

[216]  Shung-wu Lee,et al.  Simple formulas for transmission through periodic metal grids or plates , 1982 .

[217]  E. Burstein,et al.  Luminescence of dye molecules adsorbed at a Ag surface , 1981 .

[218]  D. Maystre,et al.  Inductive Grids in the Region of Diffraction Anomalies: Theory, Experiment, and Applications , 1980 .

[219]  Ross C. McPhedran,et al.  On the theory and solar application of inductive grids , 1977 .

[220]  Chao-Chun Chen,et al.  Diffraction of Electromagnetic Waves by a Conducting Screen Perforated Periodically with Holes , 1971 .

[221]  Chao-Chun Chen,et al.  Transmission through a Conducting Screen Perforated Periodically with Apertures , 1970 .

[222]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[223]  K. Möller,et al.  Far infrared bandpass filters and measurements on a reciprocal grid. , 1967, Applied optics.

[224]  R. Ulrich Far-infrared properties of metallic mesh and its complementary structure , 1967 .

[225]  A. Mitsuishi,et al.  Metal Mesh Filters in the Far Infrared Region , 1963 .

[226]  Karl Friedrich Renk,et al.  Interference Filters and Fabry-Perot Interferometers for the Far Infrared , 1962 .

[227]  R. E. Collin,et al.  Anisotropic Properties of Strip-Type Artificial Dielectric , 1961 .

[228]  R. E. Collin,et al.  Dynamic Interaction Fields in a Two-Dimensional Lattice , 1961 .

[229]  H. Bethe Theory of Diffraction by Small Holes , 1944 .

[230]  L. Rayleigh III. Note on the remarkable case of diffraction spectra described by Prof. Wood , 1907 .