Application of multiphysics model order reduction to doppler/neutronic feedback

In this paper, a proper orthogonal decomposition based reduced-order model is presented for parametrized multiphysics computations. Our application physics is Doppler feedback in a simplified model of the molten salt fast reactor concept. The reduced model is created using the method of snapshots where the offline training set is obtained by exercising a full-order model created with the OpenFOAM based multiphysics solver, GeN-Foam. The steady state models solve the multi-group diffusion k-eigenvalue equations with moving precursors together with the energy equation. A fixed velocity field is assumed throughout the computations, hence the momentum and continuity equations are not solved. The discrete empirical interpolation method is used for the efficient coupling of the ROM solvers, while the input parameter space is surveyed using the improved distributed latin hypercube sampling algorithm.

[1]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[2]  David LeBlanc Molten salt reactors: A new beginning for an old idea , 2010 .

[3]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[4]  J. Kloosterman,et al.  Modelling and analysis of the MSFR transient behaviour , 2014 .

[5]  Konstantin Mikityuk,et al.  GeN-Foam: a novel OpenFOAM® based multi-physics solver for 2D/3D transient analysis of nuclear reactors , 2015 .

[6]  Development of the model for the multi-physics analysis of Molten Salt Reactor Experiment using GeN-Foam code , 2016 .

[7]  S. Reese,et al.  POD‐based model reduction with empirical interpolation applied to nonlinear elasticity , 2016 .

[8]  M. Allibert,et al.  Towards the thorium fuel cycle with molten salt fast reactors , 2014 .

[9]  H. Macpherson The Molten Salt Reactor Adventure , 1985 .

[10]  Stefano Lorenzi An Adjoint Proper Orthogonal Decomposition method for a neutronics reduced order model , 2018 .

[11]  R. C. Robertson,et al.  MSRE DESIGN AND OPERATIONS REPORT. PART I. DESCRIPTION OF REACTOR DESIGN , 1965 .

[12]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[13]  D. Heuer,et al.  Launching the Thorium Fuel Cycle with the Molten Salt Fast Reactor , 2012 .

[14]  M. Rosenthal,et al.  Molten-Salt Reactors—History, Status, and Potential , 1970 .

[15]  M. W. Rosenthal,et al.  The development status of molten-salt breeder reactors , 1972 .

[16]  O. Geoffroy,et al.  Development of an OpenFOAM model for the Molten Salt Fast Reactor transient analysis , 2014 .

[17]  M. Aufiero,et al.  Transient coupled calculations of the Molten Salt Fast Reactor using the Transient Fission Matrix approach , 2017 .

[18]  Gianluigi Rozza,et al.  Data-Driven POD-Galerkin Reduced Order Model for Turbulent Flows , 2019, J. Comput. Phys..

[19]  Christopher C. Pain,et al.  A POD reduced order model for resolving angular direction in neutron/photon transport problems , 2015, J. Comput. Phys..

[20]  David Eugene Holcomb,et al.  Fast Spectrum Molten Salt Reactor Options , 2011 .

[21]  Ramana V. Grandhi,et al.  Improved Distributed Hypercube Sampling , 2002 .

[22]  Simao Marques,et al.  Nonlinear Aerodynamic and Aeroelastic Model Reduction using a Discrete Empirical Interpolation Method , 2017 .

[23]  Jacob K. White,et al.  A stabilized discrete empirical interpolation method for model reduction of electrical, thermal, and microelectromechanical systems , 2011, 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC).

[24]  BaiZhaojun Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[25]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[26]  Jean C. Ragusa,et al.  Reduced-order modeling of parameterized multi-group diffusion k-eigenvalue problems , 2019 .

[27]  H. P. Lee,et al.  PROPER ORTHOGONAL DECOMPOSITION AND ITS APPLICATIONS—PART I: THEORY , 2002 .

[28]  G. Rozza,et al.  POD-Galerkin method for finite volume approximation of Navier–Stokes and RANS equations , 2016 .

[29]  Andreas G. Class,et al.  Semi-automated proper orthogonal decomposition reduced order model non-linear analysis for future BWR stability , 2014 .

[30]  Muruhan Rathinam,et al.  A New Look at Proper Orthogonal Decomposition , 2003, SIAM J. Numer. Anal..

[31]  G. Rozza,et al.  A multi-physics reduced order model for the analysis of Lead Fast Reactor single channel , 2016 .

[32]  Gianluigi Rozza,et al.  Comparison of a Modal Method and a Proper Orthogonal Decomposition approach for multi-group time-dependent reactor spatial kinetics , 2014 .

[33]  Tuomas Viitanen,et al.  The Serpent Monte Carlo Code: Status, Development and Applications in 2013 , 2014, ICS 2014.

[34]  Hany S. Abdel-Khalik,et al.  CONSTRUCTION OF ACCURACY-PRESERVING SURROGATE FOR THE EIGENVALUE RADIATION DIFFUSION AND/OR TRANSPORT PROBLEM , 2012 .

[35]  A. Cammi,et al.  A multi-physics time-dependent model for the Lead Fast Reactor single-channel analysis , 2013 .

[36]  R. Pinnau Model Reduction via Proper Orthogonal Decomposition , 2008 .

[37]  Christopher C. Pain,et al.  A POD reduced‐order model for eigenvalue problems with application to reactor physics , 2013 .

[38]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[39]  H. Abdel-Khalik,et al.  Consortium for Advanced Simulation of LWRs CASL-U-2015-0153-000 CRANE : A New Scale Super-Sequence for Neutron Transport Calculations , 2015 .

[40]  R. Brissot,et al.  Possible Configurations for the Thorium Molten Salt Reactor and Advantages of the Fast Nonmoderated Version , 2009 .

[41]  Jan Leen Kloosterman Safety assessment of the molten salt fast reactor (SAMOFAR) , 2017 .

[42]  M. Kormilitsyn,et al.  Molten salt actinide recycler and transforming system without and with Th–U support: Fuel cycle flexibility and key material properties , 2014 .

[43]  M. Aufiero,et al.  Molten salt fast reactors , 2016 .