Neural Dysfunction and Neurodegeneration inDrosophila Na+/K+ ATPase Alpha Subunit Mutants

The Na+/K+ ATPase asymmetrically distributes sodium and potassium ions across the plasma membrane to generate and maintain the membrane potential in many cell types. Although these pumps have been hypothesized to be involved in various human neurological disorders, including seizures and neurodegeneration, direct genetic evidence has been lacking. Here, we describe novel mutations in the Drosophila gene encoding the α (catalytic) subunit of the Na+/K+ ATPase that lead to behavioral abnormalities, reduced life span, and severe neuronal hyperexcitability. These phenotypes parallel the occurrence of extensive, age-dependent neurodegeneration. We have also discovered that the ATPalpha transcripts undergo alternative splicing that substantially increases the diversity of potential proteins. Our data show that maintenance of neuronal viability is dependent on normal sodium pump activity and establishDrosophila as a useful model for investigating the role of the pump in human neurodegenerative and seizure disorders.

[1]  C. Auffray,et al.  Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. , 2005, European journal of biochemistry.

[2]  B. Ganetzky,et al.  Temperature-sensitive paralytic mutants are enriched for those causing neurodegeneration in Drosophila. , 2002, Genetics.

[3]  J. Horisberger,et al.  Cysteine‐scanning mutagenesis study of the sixth transmembrane segment of the Na,K‐ATPase α subunit , 2002, FEBS letters.

[4]  Peizhang Xu,et al.  In vivo modification of Na(+),K(+)-ATPase activity in Drosophila. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[5]  A. Grinberg,et al.  The thermal unfolding and domain structure of Na+/K+-exchanging ATPase. A scanning calorimetry study. , 2001, European journal of biochemistry.

[6]  M. Tanouye,et al.  Genetic suppression of seizure susceptibility in Drosophila. , 2001, Journal of neurophysiology.

[7]  T. Kimura,et al.  Alanine-scanning Mutagenesis of the Sixth Transmembrane Segment of Gastric H+,K+-ATPase α-Subunit* , 2001, The Journal of Biological Chemistry.

[8]  K. Sweadner,et al.  Thermal Denaturation of the Na,K-ATPase Provides Evidence for α-α Oligomeric Interaction and γ Subunit Association with the C-terminal Domain* , 2001, The Journal of Biological Chemistry.

[9]  K. Abe,et al.  The oligomeric nature of Na/K-transport ATPase. , 2001, Journal of biochemistry.

[10]  R. Reenan,et al.  dADAR, a Drosophila double-stranded RNA-specific adenosine deaminase is highly developmentally regulated and is itself a target for RNA editing. , 2000, RNA.

[11]  A. Mobasheri,et al.  Na+, K+-ATPase Isozyme Diversity; Comparative Biochemistry and Physiological Implications of Novel Functional Interactions , 2000, Bioscience reports.

[12]  J. Lingrel,et al.  Alanine scanning mutagenesis of oxygen-containing amino acids in the transmembrane region of the Na,K-ATPase. , 1999, Archives of biochemistry and biophysics.

[13]  S. Benzer,et al.  Preventing neurodegeneration in the Drosophila mutant bubblegum. , 1999, Science.

[14]  R. Walsh,et al.  Identification of a specific role for the Na,K-ATPase alpha 2 isoform as a regulator of calcium in the heart. , 1999, Molecular cell.

[15]  J. Lingrel,et al.  Functional role of oxygen-containing residues in the fifth transmembrane segment of the Na,K-ATPase alpha subunit. , 1999, Archives of biochemistry and biophysics.

[16]  G. Blanco,et al.  Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. , 1998, American journal of physiology. Renal physiology.

[17]  S. D. Carlson,et al.  Temperature-Sensitive Paralytic Mutations Demonstrate that Synaptic Exocytosis Requires SNARE Complex Assembly and Disassembly , 1998, Neuron.

[18]  Y. Shima,et al.  A missense mutation of the gene for Na+,K(+)-ATPase alpha-subunit causes abnormal feeding behavior in Caenorhabditis elegans. , 1998, Biochemical and biophysical research communications.

[19]  D. Shields,et al.  Evidence for an allelic association between bipolar disorder and a Na+, K+ adenosine triphosphatase alpha subunit gene (ATP1A3) , 1998, Biological Psychiatry.

[20]  P. Salvaterra,et al.  Functional Analysis and Tissue‐Specific Expression of Drosophila Na+,K+‐ATPase Subunits , 1998, Journal of neurochemistry.

[21]  P. A. Pedersen,et al.  Structure-function relationships of E1-E2 transitions and cation binding in Na,K-pump protein. , 1998, Biochimica et biophysica acta.

[22]  S. Benzer,et al.  Spongecake and eggroll: two hereditary diseases in Drosophila resemble patterns of human brain degeneration , 1997, Current Biology.

[23]  S. Benzer,et al.  The Swiss Cheese Mutant Causes Glial Hyperwrapping and Brain Degeneration in Drosophila , 1997, The Journal of Neuroscience.

[24]  K. Takeyasu,et al.  The Drosophila Na,K-ATPase alpha-subunit gene: gene structure, promoter function and analysis of a cold-sensitive recessive-lethal mutation. , 1997, Genes and function.

[25]  J. Warmke,et al.  The Drosophila erg K+ Channel Polypeptide Is Encoded by the Seizure Locus , 1997, The Journal of Neuroscience.

[26]  Xinjing Wang,et al.  The seizure Locus Encodes the DrosophilaHomolog of the HERG Potassium Channel , 1997, The Journal of Neuroscience.

[27]  J. Fransen,et al.  Role of Negatively Charged Residues in the Fifth and Sixth Transmembrane Domains of the Catalytic Subunit of Gastric H+,K+-ATPase* , 1996, The Journal of Biological Chemistry.

[28]  S. Lockery,et al.  Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  A. Askari,et al.  Intersubunit and Intrasubunit Contact Regions of Na+/K+-ATPase Revealed by Controlled Proteolysis and Chemical Cross-linking (*) , 1995, The Journal of Biological Chemistry.

[30]  J. Kaplan,et al.  Membrane disposition of the M5-M6 hairpin of Na+,K(+)-ATPase alpha subunit is ligand dependent. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Pallanck,et al.  A Drosophila NSF mutant , 1995, Nature.

[32]  R. Curini,et al.  Spongy state (status spongiosus) and inhibition of Na,K-ATPase: a pathogenetic theory. , 1995, Medical hypotheses.

[33]  R. Wyatt,et al.  The Na,K-ATPase hypothesis for bipolar illness , 1995, Biological Psychiatry.

[34]  E. Wagner,et al.  Degeneration of neural cells in the central nervous system of mice deficient in the gene for the adhesion molecule on Glia, the beta 2 subunit of murine Na,K-ATPase , 1994, The Journal of cell biology.

[35]  J. Lingrel,et al.  Na+,K(+)-ATPase. , 1994, The Journal of biological chemistry.

[36]  G. Lees,et al.  Brain lesions induced by specific and non-specific inhibitors of sodium-potassium ATPase , 1994, Brain Research.

[37]  J. Kaplan,et al.  Molecular events in close proximity to the membrane associated with the binding of ligands to the Na,K-ATPase. , 1994, The Journal of biological chemistry.

[38]  J. Palka,et al.  A mutation of the drosophila sodium pump α subunit gene results in bang-sensitive paralysis , 1994, Neuron.

[39]  S. Benzer,et al.  Defective Glia in the Drosophila Brain Degeneration Mutant drop-dead , 1993, Neuron.

[40]  G. Lees Contributory mechanisms in the causation of neurodegenerative disorders , 1993, Neuroscience.

[41]  B. Hyman,et al.  Do defecs in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? , 1993, Trends in Neurosciences.

[42]  M. Esmann,et al.  The Na,K-ATPase , 1992, Journal of bioenergetics and biomembranes.

[43]  F. Gabreëls,et al.  Neonatal Status Convulsivus, Spongiform Encephalopathy, and Low Activity of Na+/K+ ‐ATPase in the Brain , 1992, Epilepsia.

[44]  N. Atkinson,et al.  A component of calcium-activated potassium channels encoded by the Drosophila slo locus. , 1991, Science.

[45]  B. Ganetzky,et al.  Conduction in the giant nerve fiber pathway in temperature-sensitive paralytic mutants of Drosophila. , 1990, Journal of neurogenetics.

[46]  B. Ganetzky,et al.  Molecular analysis of the para locus, a sodium channel gene in Drosophila , 1989, Cell.

[47]  K. Takeyasu,et al.  Molecular characterization and expression of the (Na+ + K+)‐ATPase alpha‐subunit in Drosophila melanogaster. , 1989, The EMBO journal.

[48]  A. Chobanian,et al.  Isoform-specific modulation of Na+, K+-ATPase alpha-subunit gene expression in hypertension. , 1988, Science.

[49]  J. Nelson,et al.  Enhancer of seizure: a new genetic locus in Drosophila melanogaster defined by interactions with temperature-sensitive paralytic mutations. , 1987, Genetics.

[50]  B. Ganetzky,et al.  Drosophila mutants with opposing effects on nerve excitability: genetic and spatial interactions in repetitive firing. , 1982, Journal of neurophysiology.

[51]  Y. Jan,et al.  A Drosophila mutant with a temperature-sensitive block in nerve conduction. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[52]  S. Benzer,et al.  Abnormal Electroretinograms in Visual Mutants of Drosophila , 1969, Nature.

[53]  W. Pak,et al.  Nonphototactic Mutants in a Study of Vision of Drosophila , 1969, Nature.

[54]  A. Bignami,et al.  Experimentally produced Cerebral Status Spongiosus and Continuous Pseudorhythmic Electroencephalographic Discharges with a Membrane-ATPase Inhibitor in the Rat , 1966, Nature.

[55]  K. Sweadner,et al.  Thermal denaturation of the Na,K-ATPase provides evidence for alpha-alpha oligomeric interaction and gamma subunit association with the C-terminal domain. , 2001, The Journal of biological chemistry.

[56]  J. Palka,et al.  A mutation of the Drosophila sodium pump alpha subunit gene results in bang-sensitive paralysis. , 1994, Neuron.

[57]  K. Geering Posttranslational modifications and intracellular transport of sodium pumps: importance of subunit assembly. , 1991, Society of General Physiologists series.