The spatial representation of surface roughness by means of the structure function: A practical alternative to correlation

[1]  S. Rice Mathematical analysis of random noise , 1944 .

[2]  On the Use of Gram‐Charlier Series to Represent Noise , 1956 .

[3]  M. Longuet-Higgins Statistical properties of an isotropic random surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  E. Parzen,et al.  Principles and applications of random noise theory , 1959 .

[5]  R. A. Silverman,et al.  Wave Propagation in a Turbulent Medium , 1961 .

[6]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[7]  D. Whitehouse,et al.  The properties of random surfaces of significance in their contact , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[8]  J. Greenwood,et al.  The Contact of Two Nominally Flat Rough Surfaces , 1970 .

[9]  A. E. Dukler,et al.  Statistical Characteristics of Thin, Vertical, Wavy, Liquid Films , 1970 .

[10]  P. Nayak,et al.  Random Process Model of Rough Surfaces , 1971 .

[11]  Richard Timothy Hunt,et al.  Asperity persistence and the real area of contact between rough surfaces , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  J. Williamson,et al.  On the plastic contact of rough surfaces , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[13]  T. Thomas Recent advances in the measurement and analysis of surface microgeometry , 1975 .

[14]  T. Sankar,et al.  Profile Characterization of Manufactured Surfaces Using Random Function Excursion Technique—Part 1: Theory , 1975 .

[15]  R. S. Sayles,et al.  A stochastic explanation of some structural properties of a ground surface , 1976 .