A General-Purpose, Inelastic, Rotation-Free Kirchhoff-Love Shell Formulation for Peridynamics

We present a comprehensive rotation-free Kirchhoff—Love (KL) shell formulation for peridynamics (PD) that is capable of modeling large elasto-plastic deformations and fracture in thin-walled structures. To remove the need for a predefined global parametric domain, Principal Component Analysis is employed in a meshfree setting to develop a local parameterization of the shell midsurface. The KL shell kinematics is utilized to develop a correspondence-based PD formulation. A bond-stabilization technique is employed to naturally achieve stability of the discrete solution. Only the mid-surface velocity degrees of freedom are used in the governing thin-shell equations. 3D rate-form material models are employed to enable simulating a wide range of material behavior. A bond-associative damage correspondence modeling approach is adopted to use classical failure criteria at the bond level, which readily enables the simulation of brittle and ductile fracture. Discretizing the model with asymptotically compatible meshfree approximation provides a scheme which converges to the classical KL shell model while providing an accurate and flexible framework for treating fracture. A wide range of numerical examples, ranging from elastostatics to problems involving plasticity, fracture, and fragmentation, are conducted to validate the accuracy, convergence, and robustness of the developed PD thin-shell formulation. It is also worth noting that the present method naturally enables the discretization of a shell theory requiring higher-order smoothness on a completely unstructured surface mesh.

[1]  K. Bathe,et al.  A four‐node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation , 1985 .

[2]  N. Amenta,et al.  Defining point-set surfaces , 2004, SIGGRAPH 2004.

[3]  Wim Desmet,et al.  A flexible approach for coupling NURBS patches in rotationless isogeometric analysis of Kirchhoff-Love shells , 2017 .

[4]  Steven J. Ruuth,et al.  Simple computation of reaction–diffusion processes on point clouds , 2013, Proceedings of the National Academy of Sciences.

[5]  Ziguang Chen,et al.  Peridynamic Modeling of Intergranular Corrosion Damage , 2018 .

[6]  Xiaochuan Tian,et al.  Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation , 2020, ArXiv.

[7]  S. Oterkus,et al.  A Kirchhoff plate formulation in a state-based peridynamic framework , 2020 .

[8]  HoppeHugues,et al.  Surface Reconstruction from Unorganized Points , 1992 .

[9]  A. Pressley Elementary Differential Geometry , 2000 .

[10]  A. Ugural Stresses in Beams, Plates, and Shells , 2009 .

[11]  Martin Lévesque,et al.  A Review of Benchmark Experiments for the Validation of Peridynamics Models , 2019, Journal of Peridynamics and Nonlocal Modeling.

[12]  M. Dehghan,et al.  Generalized moving least squares and moving kriging least squares approximations for solving the transport equation on the sphere , 2019, 1904.05831.

[13]  S.J. Schraml,et al.  Simulating the Formation and Evolution of Behind Armor Debris Fields , 2005, 2005 Users Group Conference (DOD-UGC'05).

[14]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[15]  Erkan Oterkus,et al.  Peridynamics review , 2018, Mathematics and Mechanics of Solids.

[16]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: IV. On the interaction of stress waves with propagating cracks , 1984 .

[17]  Hongkai Zhao,et al.  A local mesh method for solving PDEs on point clouds , 2013 .

[18]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[19]  M. Gunzburger,et al.  A nonlocal peridynamics modeling approach for corrosion damage and crack propagation , 2019, Theoretical and Applied Fracture Mechanics.

[20]  Debasish Roy,et al.  A peridynamic theory for linear elastic shells , 2015 .

[21]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[22]  F. Bobaru,et al.  A peridynamic model for brittle damage and fracture in porous materials , 2019, International Journal of Rock Mechanics and Mining Sciences.

[23]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[24]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[25]  R. L. Harder,et al.  A proposed standard set of problems to test finite element accuracy , 1985 .

[26]  J. N. Reddy,et al.  A refined nonlinear theory of plates with transverse shear deformation , 1984 .

[27]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[28]  Mirco Zaccariotto,et al.  Crack propagation with adaptive grid refinement in 2D peridynamics , 2014, International Journal of Fracture.

[29]  David John Littlewood,et al.  Simulation of Dynamic Fracture Using Peridynamics, Finite Element Modeling, and Contact , 2010 .

[30]  Joerg Kuhnert,et al.  A fully Lagrangian meshfree framework for PDEs on evolving surfaces , 2019, J. Comput. Phys..

[31]  L. Lorenzis,et al.  Phase-field modeling of brittle and ductile fracture in shells with isogeometric NURBS-based solid-shell elements , 2016 .

[32]  Sheng-Wei Chi,et al.  Meshfree Methods: Progress Made after 20 Years , 2017 .

[33]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[34]  Philippe H. Geubelle,et al.  Handbook of Peridynamic Modeling , 2017 .

[35]  A. E. H. Love,et al.  The Small Free Vibrations and Deformation of a Thin Elastic Shell , 1887 .

[36]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[37]  Thomas Ertl,et al.  Extraction of Fragments and Waves After Impact Damage in Particle-Based Simulations , 2017 .

[38]  Wing Kam Liu,et al.  Stress projection for membrane and shear locking in shell finite elements , 1985 .

[39]  David J. Steigmann,et al.  A two-dimensional peridynamic model for thin plates , 2015 .

[40]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[41]  Raul Radovitzky,et al.  An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures , 2014 .

[42]  Hailong Chen,et al.  Bond-associated deformation gradients for peridynamic correspondence model , 2018, Mechanics Research Communications.

[43]  R. Lehoucq,et al.  Peridynamic Theory of Solid Mechanics , 2010 .

[44]  Nathaniel Trask,et al.  Compatible meshfree discretization of surface PDEs , 2020, Computational Particle Mechanics.

[45]  Ziguang Chen,et al.  Peridynamic modeling of pitting corrosion damage , 2015 .

[46]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[47]  Jiun-Shyan Chen,et al.  A reproducing kernel smooth contact formulation for metal forming simulations , 2014 .

[48]  F. P. Bowden,et al.  Controlled Fracture of Brittle Solids and Interruption of Electrical Current , 1967, Nature.

[49]  Xiaochuan Tian,et al.  Super-convergence of reproducing kernel approximation , 2019, Computer Methods in Applied Mechanics and Engineering.

[50]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part II—applications , 1999 .

[51]  Guanfeng Zhang,et al.  Why do cracks branch? A peridynamic investigation of dynamic brittle fracture , 2015, International Journal of Fracture.

[52]  Falk K. Wittel,et al.  From fracture to fragmentation: Discrete element modeling , 2014, 1509.01003.

[53]  Bo Ren,et al.  A stabilized non-ordinary state-based peridynamics for the nonlocal ductile material failure analysis in metal machining process , 2015 .

[54]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[55]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[56]  Qiang Du,et al.  Asymptotically Compatible Schemes and Applications to Robust Discretization of Nonlocal Models , 2014, SIAM J. Numer. Anal..

[57]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[58]  S. Silling Stability of peridynamic correspondence material models and their particle discretizations , 2016 .

[59]  Philippe H. Geubelle,et al.  Non-ordinary state-based peridynamic analysis of stationary crack problems , 2014 .

[60]  John T. Foster,et al.  Peridynamic Plates and Flat Shells: A non-ordinary, state-based model , 2014 .

[61]  Ireneusz Lapczyk,et al.  Progressive damage modeling in fiber-reinforced materials , 2007 .

[62]  Xiaochuan Tian,et al.  Asymptotically compatible reproducing kernel collocation and meshfree integration for nonlocal diffusion , 2019, SIAM J. Numer. Anal..

[63]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[64]  T. Liszka,et al.  The finite difference method at arbitrary irregular grids and its application in applied mechanics , 1980 .

[65]  Julian J. Rimoli,et al.  An approach for incorporating classical continuum damage models in state-based peridynamics , 2013 .

[66]  T. J. Vogler,et al.  Peridynamics Modeling of a Shock Wave Perturbation Decay Experiment in Granular Materials with Intra-granular Fracture , 2018, Journal of Dynamic Behavior of Materials.

[67]  Z. Hashin Failure Criteria for Unidirectional Fiber Composites , 1980 .

[68]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[69]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[70]  Shaofan Li,et al.  Reproducing kernel hierarchical partition of unity, Part I—formulation and theory , 1999 .

[71]  U. Galvanetto,et al.  Linearized state‐based peridynamics for 2‐D problems , 2016 .

[72]  Hongkai Zhao,et al.  A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion , 2011, J. Comput. Phys..

[73]  Deju Zhu,et al.  Characterization of Dynamic Tensile Testing Using Aluminum Alloy 6061-T6 at Intermediate Strain Rates , 2011 .

[75]  Mi G. Chorzepa,et al.  Fracture analysis of fiber reinforced concrete structures in the micropolar peridynamic analysis framework , 2017 .

[76]  Marco Pasetto,et al.  Generalized reproducing kernel peridynamics: unification of local and non-local meshfree methods, non-local derivative operations, and an arbitrary-order state-based peridynamic formulation , 2020, Computational Particle Mechanics.

[77]  D. Flanagan,et al.  An accurate numerical algorithm for stress integration with finite rotations , 1987 .

[78]  Mukul M. Sharma,et al.  A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach , 2015 .

[79]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[80]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[81]  YuanTong Gu,et al.  A Meshless Local Petrov-Galerkin (MLPG) Formulation for Static and Free Vibration Analyses of Thin Plates , 2001 .

[82]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[83]  F. Bobaru,et al.  An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity , 2020, 2010.08043.

[84]  Yuri Bazilevs,et al.  Peridynamic Modeling of Frictional Contact , 2019, Journal of Peridynamics and Nonlocal Modeling.

[85]  Robert L. Taylor,et al.  A constitutive model for anisotropic damage in fiber-composites , 1995 .

[86]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[87]  Dongdong Wang,et al.  A Hermite reproducing kernel approximation for thin‐plate analysis with sub‐domain stabilized conforming integration , 2008 .

[88]  Thomas Slawson,et al.  Semi-Lagrangian reproducing kernel particle method for fragment-impact problems , 2011 .

[89]  Selda Oterkus,et al.  Peridynamics for the thermomechanical behavior of shell structures , 2019, Engineering Fracture Mechanics.

[90]  Masoud Behzadinasab,et al.  Peridynamic modeling of large deformation and ductile fracture , 2019 .

[91]  Roger A. Sauer,et al.  A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries , 2017 .

[92]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[93]  Kaushik Dayal,et al.  Bond-level deformation gradients and energy averaging in peridynamics , 2018 .

[94]  Y. Bazilevs,et al.  An updated Lagrangian framework for Isogeometric Kirchhoff–Love thin-shell analysis , 2021 .

[95]  A meshfree Lagrangian method for flow on manifolds , 2020, International Journal for Numerical Methods in Fluids.

[96]  S. Oterkus,et al.  Peridynamic Model for a Mindlin Plate Resting on a Winkler Elastic Foundation , 2020, Journal of Peridynamics and Nonlocal Modeling.

[97]  Zdeněk P. Bažant,et al.  Wave Dispersion and Basic Concepts of Peridynamics Compared to Classical Nonlocal Damage Models , 2016 .

[98]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[99]  John T. Foster,et al.  The third Sandia Fracture Challenge: peridynamic blind prediction of ductile fracture characterization in additively manufactured metal , 2019, International Journal of Fracture.

[100]  Erdogan Madenci,et al.  Peridynamic differential operator and its applications , 2016 .

[101]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[102]  Robert Michael Kirby,et al.  RBF-LOI: Augmenting Radial Basis Functions (RBFs) with Least Orthogonal Interpolation (LOI) for Solving PDEs on Surfaces , 2018, J. Comput. Phys..

[103]  Nathaniel Trask,et al.  An asymptotically compatible meshfree quadrature rule for nonlocal problems with applications to peridynamics , 2018, Computer Methods in Applied Mechanics and Engineering.

[104]  Josef Kiendl,et al.  Isogeometric Kirchhoff–Love shell formulation for elasto-plasticity , 2018, Computer Methods in Applied Mechanics and Engineering.

[105]  Marino Arroyo,et al.  Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations , 2019, J. Comput. Phys..

[106]  Thomas J. R. Hughes,et al.  A simple and efficient finite element for plate bending , 1977 .

[107]  Satya N. Atluri,et al.  A Meshless Local Petrov-Galerkin Method for Solving the Bending Problem of a Thin Plate , 2002 .

[108]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[109]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[110]  Klaus-Jürgen Bathe,et al.  A study of three‐node triangular plate bending elements , 1980 .

[111]  Chao Zhang,et al.  Numerical modelling of ductile fracture in steel plates with non-ordinary state-based peridynamics , 2020 .

[112]  Lalit C. Chhabildas,et al.  Fragmentation of Materials In Expanding Tube Experiments , 2003 .

[113]  Gui-Rong Liu,et al.  a Mesh-Free Method for Static and Free Vibration Analyses of Thin Plates of Complicated Shape , 2001 .

[114]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[115]  Ziguang Chen,et al.  Intraply Fracture in Fiber-Reinforced Composites: A Peridynamic Analysis , 2018, American Society for Composites 2018.

[116]  V.B.C. Tan,et al.  Element free method for static and free vibration analysis of spatial thin shell structures , 2002 .

[117]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[118]  R. Radovitzky,et al.  A parallel discontinuous Galerkin/cohesive-zone computational framework for the simulation of fracture in shear-flexible shells , 2017 .

[119]  W. Gerstle,et al.  Improved State-Based Peridynamic Lattice Model Including Elasticity, Plasticity and Damage , 2018, Computer Modeling in Engineering & Sciences.

[120]  John T. Foster,et al.  On the stability of the generalized, finite deformation correspondence model of peridynamics , 2019, International Journal of Solids and Structures.

[121]  Sheng-Wei Chi,et al.  A gradient reproducing kernel collocation method for boundary value problems , 2013 .

[122]  J. Foster,et al.  Revisiting the third Sandia Fracture Challenge: a bond-associated, semi-Lagrangian peridynamic approach to modeling large deformation and ductile fracture , 2020, International Journal of Fracture.

[123]  Qi Zhang,et al.  A peridynamic Reissner‐Mindlin shell theory , 2020, International Journal for Numerical Methods in Engineering.

[124]  Yuri Bazilevs,et al.  A Unified, Stable and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part I: Core Methods , 2020, Journal of Peridynamics and Nonlocal Modeling.

[125]  John T. Foster,et al.  A semi-Lagrangian constitutive correspondence framework for peridynamics , 2020 .

[126]  E. Ramm,et al.  Models and finite elements for thin-walled structures , 2004 .

[127]  Debasish Roy,et al.  A modified peridynamics correspondence principle: Removal of zero-energy deformation and other implications , 2019, Computer Methods in Applied Mechanics and Engineering.

[128]  James W. Foulk,et al.  The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal , 2019, International Journal of Fracture.

[129]  Wim Desmet,et al.  Isogeometric collocation for Kirchhoff-Love plates and shells , 2018 .

[130]  K. Ravi-Chandar,et al.  The Sandia Fracture Challenge: blind round robin predictions of ductile tearing , 2014, International Journal of Fracture.

[131]  Yuri Bazilevs,et al.  A Unified, Stable, and Accurate Meshfree Framework for Peridynamic Correspondence Modeling—Part II: Wave Propagation and Enforcement of Stress Boundary Conditions , 2020, Journal of Peridynamics and Nonlocal Modeling.

[132]  J. Dienes On the analysis of rotation and stress rate in deforming bodies , 1979 .

[133]  T. Belytschko,et al.  An implicit gradient model by a reproducing kernel strain regularization in strain localization problems , 2004 .

[134]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[135]  S. Li,et al.  Synchronized reproducing kernel interpolant via multiple wavelet expansion , 1998 .

[136]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[137]  Paul Geladi,et al.  Principal Component Analysis , 1987, Comprehensive Chemometrics.

[138]  Nicolas Sau,et al.  Peridynamic modeling of concrete structures , 2007 .

[139]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[140]  Michael A. Sutton,et al.  Mixed mode stable tearing of thin sheet AI 6061-T6 specimens: experimental measurements and finite element simulations using a modified Mohr-Coulomb fracture criterion , 2011 .

[141]  Erkan Oterkus,et al.  Peridynamics for bending of beams and plates with transverse shear deformation , 2015 .

[142]  A. McBride,et al.  Continuum-kinematics-inspired peridynamics. Mechanical problems , 2019, Journal of the Mechanics and Physics of Solids.

[143]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[144]  Yuri Bazilevs,et al.  Coupling of IGA and Peridynamics for Air-Blast Fluid-Structure Interaction Using an Immersed Approach , 2021, Forces in Mechanics.

[145]  David John Littlewood,et al.  Identification of Fragments in a Meshfree Peridynamic Simulation , 2016 .

[146]  Yuri Bazilevs,et al.  Computational fluid–structure interaction: methods and application to a total cavopulmonary connection , 2009 .

[147]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[148]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[149]  F. Bobaru,et al.  Uncovering the dynamic fracture behavior of PMMA with peridynamics: The importance of softening at the crack tip , 2019, Engineering Fracture Mechanics.

[150]  Grady B. Wright,et al.  Mesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions , 2018, J. Comput. Phys..

[151]  Ted Belytschko,et al.  Analysis of thin plates by the element-free Galerkin method , 1995 .

[152]  B. J. Gross,et al.  Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach , 2019, J. Comput. Phys..