An Interactive Hybrid System for Identifying and Filtering Unsolicited E-mail
暂无分享,去创建一个
[1] Lluís Màrquez i Villodre,et al. Boosting Trees for Anti-Spam Email Filtering , 2001, ArXiv.
[2] Mads Haahr,et al. A Case-Based Approach to Spam Filtering that Can Track Concept Drift , 2003 .
[3] W. Yerazunis. The Spam-Filtering Accuracy Plateau at 99 . 9 % Accuracy and How to Get Past It . , .
[4] Georgios Paliouras,et al. An evaluation of Naive Bayesian anti-spam filtering , 2000, ArXiv.
[5] Walter Daelemans,et al. TiMBL: Tilburg Memory-Based Learner , 2007 .
[6] Thomas G. Dietterich. What is machine learning? , 2020, Archives of Disease in Childhood.
[7] Georgios Paliouras,et al. Learning to Filter Spam E-Mail: A Comparison of a Naive Bayesian and a Memory-Based Approach , 2000, ArXiv.
[8] Héctor Rulot Segovia. Ecgi: un algoritmo de inferencia gramatical mediante corrección de errores , 1992 .
[9] W. S. Yerazunis. The Spam-Filtering Accuracy Plateau at 99.9 percent Accuracy and How to Get Past It , 2004 .
[10] Jian Yan-ying. Spam-filtering Techniques , 2008 .
[11] Walter Daelemans,et al. TiMBL: Tilburg Memory-Based Learner, version 2.0, Reference guide , 1998 .
[12] William W. Cohen. Learning Rules that Classify E-Mail , 1996 .
[13] Harris Drucker,et al. Support vector machines for spam categorization , 1999, IEEE Trans. Neural Networks.
[14] Ryszard S. Michalski,et al. A theory and methodology of inductive learning , 1993 .