Unavoidable subhypergraphs: a-clusters
暂无分享,去创建一个
[1] Dhruv Mubayi. Erdos-Ko-Rado for three sets , 2006, J. Comb. Theory, Ser. A.
[2] János Pach,et al. On disjointly representable sets , 1984, Comb..
[3] Vašek Chvátal. An Extremal Set‐Intersection Theorem , 1974 .
[4] Zoltán Füredi,et al. Forbidding Just One Intersection , 1985, J. Comb. Theory, Ser. A.
[5] Dhruv Mubayi,et al. On the VC-dimension of uniform hypergraphs , 2007 .
[6] L. Lovász. Combinatorial problems and exercises , 1979 .
[7] Dhruv Mubayi,et al. Set systems with union and intersection constraints , 2009, J. Comb. Theory, Ser. B.
[8] Hanfried Lenz,et al. Design theory , 1985 .
[9] Zoltán Füredi,et al. Exact solution of some Turán-type problems , 1987, J. Comb. Theory, Ser. A.
[10] D. Mubayi. An intersection theorem for four sets , 2007 .
[11] Rudolf Ahlswede,et al. Counterexample to the Frankl-Pach conjecture for uniform, dense families , 1997, Comb..
[12] Peter Frankl,et al. On Sperner Families Satisfying an Additional Condition , 1976, J. Comb. Theory, Ser. A.
[13] Zoltán Füredi,et al. On finite set-systems whose every intersection is a Kernel of a star , 1983, Discret. Math..
[14] Jiuqiang Liu,et al. Families of Sets with Intersecting Clusters , 2009, SIAM J. Discret. Math..
[15] Zoltán Füredi,et al. A new generalization of the Erdős-Ko-Rado theorem , 1983, Comb..
[16] Vojtech Rödl,et al. On a Packing and Covering Problem , 1985, Eur. J. Comb..
[17] Dhruv Mubayi,et al. Set systems without a simplex or a cluster , 2010, Comb..
[18] P. Erdös,et al. INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS , 1961 .
[19] Tao Jiang,et al. Set Systems without a Strong Simplex , 2010, SIAM J. Discret. Math..
[20] Jacques Verstraëte,et al. Proof Of A Conjecture Of Erdős On Triangles In Set-Systems , 2005, Comb..
[21] B. Bollobás. On generalized graphs , 1965 .