Enhanced pluggable out-of-plane coupling components for printed circuit board-level optical interconnections

We present an enhanced out-of-plane coupling component for Printed Circuit Board-level optical interconnections. Rather than using a standard 45° micro-mirror to turn the light path over 90° we introduce a curvature in the mirror profile and incorporate an extra cylindrical micro-lens for beam collimation. Both modifications enable an increase in coupling efficiency and are extensively investigated using non-sequential ray tracing simulations in combination with Matlab optimization algorithms. The resulting design is fabricated using Deep Proton Writing and experimental characterization of the geometrical properties and measured coupling efficiencies are presented.

[1]  M. Heckele,et al.  Review on micro molding of thermoplastic polymers , 2004 .

[2]  J. Kivilahti,et al.  Fabrication of polymer optical waveguides with integrated micromirrors for out-of-plane surface normal optical interconnects , 2004, 4th IEEE International Conference on Polymers and Adhesives in Microelectronics and Photonics, 2004. POLYTRONIC 2004..

[3]  Jang-Joo Kim,et al.  Fabrication of multimode polymeric waveguides and micromirrors using deep X-ray lithography , 2004 .

[4]  C. Debaes,et al.  Discrete Out-of-Plane Coupling Components for Printed Circuit Board-Level Optical Interconnections , 2007, IEEE Photonics Technology Letters.

[5]  M. Vervaeke,et al.  Deep proton writing: a rapid prototyping polymer micro-fabrication tool for micro-optical modules , 2006 .

[6]  H. Thienpont,et al.  Laser Ablated Micromirrors for Printed Circuit Board Integrated Optical Interconnections , 2007, IEEE Photonics Technology Letters.

[7]  H. Thienpont,et al.  Introduction to the issue on optical interconnects , 2003 .

[8]  Hugo Thienpont,et al.  Using a fly’s eye integrator in efficient illumination engines with multiple light-emitting diode light sources , 2007 .

[9]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[10]  H. Thienpont,et al.  MT-compatible laser-ablated interconnections for optical printed circuit boards , 2004, Journal of Lightwave Technology.

[11]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[12]  H. Thienpont,et al.  Laser ablation of parallel optical interconnect waveguides , 2006, IEEE Photonics Technology Letters.

[13]  A. Glebov,et al.  Optical interconnect modules with fully integrated reflector mirrors , 2005, IEEE Photonics Technology Letters.

[14]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[15]  Ray T. Chen,et al.  Fully embedded board-level guided-wave optoelectronic interconnects , 2000, Proceedings of the IEEE.

[16]  S. Uhlig,et al.  Limitations to and solutions for optical loss in optical backplanes , 2006, Journal of Lightwave Technology.

[17]  Christof Debaes,et al.  Deep lithography with protons to prototype pluggable micro-optical out-of-plane coupling structures for multimode waveguides , 2005, SPIE Optics + Optoelectronics.

[18]  H. Thienpont,et al.  Replication of deep micro-optical components prototyped by Deep Proton Writing , 2008, SPIE Photonics Europe.

[19]  S. Imamura,et al.  Polymeric optical waveguide films with 45° mirrors formed with a 90° V-shaped diamond blade , 1997 .

[20]  R.T. Chen,et al.  Optoelectronic integration of polymer waveguide array and metal-semiconductor-metal photodetector through micromirror couplers , 2001, IEEE Photonics Technology Letters.