A dye-sensitized photo-supercapacitor based on PProDOT-Et2 thick films

Abstract A photo-rechargeable supercapacitor (photo-supercapacitor, or PSC) is studied using a N3-dye adsorbed TiO 2 photoelectrode and PProDOT-Et 2 poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) polymer films as supercapacitor materials for electron storage. The PSC device, comprising a dye-sensitized solar cell (DSSC) and a supercapacitor (SC), can store the photo-to-electric energy. The PProDOT-Et 2 films are potentiostatically electropolymerized to form thick films ( ca . 0.5 mm) with a specific capacitance of ca . 6.5 F cm −2 . A symmetrical (p/p) supercapacitor, with PProDOT-Et 2 coated on both electrodes, is also characterized before fabricating the three-electrode PSC. The PSC is tested under light illumination of 100 mW cm −2 , and attaining a photocharged voltage of 0.75 V and a discharged energy density of 21.3 μWh cm −2 .

[1]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[2]  G. Chen,et al.  Electrochemical fabrication and capacitance of composite films of carbon nanotubes and polyaniline , 2005 .

[3]  Hiroshi Segawa,et al.  Energy-storable dye-sensitized solar cell with a polypyrrole electrode. , 2004, Chemical communications.

[4]  H. Randriamahazaka,et al.  Electrochemical impedance spectroscopy of an oxidized poly(3,4-ethylenedioxythiophene) in propylene carbonate solutions , 2003 .

[5]  M. Barak,et al.  Power Sources 4 , 1974 .

[6]  A. Sarac,et al.  Electrochemically polymerized 2,2-dimethyl-3,4-propylenedioxythiophene on carbon fiber for microsupercapacitor , 2007 .

[7]  Derek J. Fray,et al.  Achieving high electrode specific capacitance with materials of low mass specific capacitance : Potentiostatically grown thick micro-nanoporous PEDOT films , 2007 .

[8]  Michael Grätzel,et al.  Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell , 2003 .

[9]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[10]  P. Aubert,et al.  In situ conductivity measurements on polyethylenedioxythiophene derivatives with different counter ions , 2002 .

[11]  Tsutomu Miyasaka,et al.  A high-voltage dye-sensitized photocapacitor of a three-electrode system. , 2005, Chemical communications.

[12]  J. Reynolds,et al.  Conducting Poly(3,4-alkylenedioxythiophene) Derivatives as Fast Electrochromics with High-Contrast Ratios , 1998 .

[13]  E. Frąckowiak,et al.  Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites , 2004 .

[14]  Ran Liu,et al.  Poly(3,4-ethylenedioxythiophene) nanotubes as electrode materials for a high-powered supercapacitor , 2008, Nanotechnology.

[15]  Marina Mastragostino,et al.  New trends in electrochemical supercapacitors , 2001 .

[16]  John R. Reynolds,et al.  Poly(ProDOT‐Et2): A High‐Contrast, High‐Coloration Efficiency Electrochromic Polymer , 2002 .

[17]  On the structural variations of Ru(II) complexes for dye-sensitized solar cells , 2005 .

[18]  Glenn Amatucci,et al.  Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes , 2003 .

[19]  C. Plesse,et al.  Charging/discharging kinetics of poly(3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ionic liquid under galvanostatic conditions , 2005 .

[20]  J. Lukkari,et al.  n- and p-Doped Poly(3,4-ethylenedioxythiophene): Two Electronically Conducting States of the Polymer , 2000 .

[21]  E. Laviron General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems , 1979 .

[22]  Shimshon Gottesfeld,et al.  Conducting polymers as active materials in electrochemical capacitors , 1994 .

[23]  M. Rincón,et al.  Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells , 2006 .

[24]  S. Kondo,et al.  Photo-rechargeable solid state battery , 1990 .

[25]  N. Mermilliod,et al.  Capacitive Charge and Noncapacitive Charge in Conducting Polymer Electrodes , 1987 .

[26]  B. Orel,et al.  Photovoltaically Self-Charging Battery , 2002 .

[27]  A. Ramanavičius,et al.  Conducting polymer-based nanostructurized materials: electrochemical aspects , 2005, Nanotechnology.

[28]  T. Nomiyama,et al.  Photo-rechargeable battery with TiO2/carbon fiber electrodes prepared by laser deposition , 2000 .

[29]  A. Samui,et al.  All-solid supercapacitor based on polyaniline and sulfonated poly(ether ether ketone) , 2003 .

[30]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[31]  Tsutomu Miyasaka,et al.  The photocapacitor: An efficient self-charging capacitor for direct storage of solar energy , 2004 .

[32]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[33]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[34]  A. Ivaska,et al.  Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions , 2000 .

[35]  K. Ho,et al.  Cycling and at-rest stabilities of a complementary electrochromic device containing poly(3,4-ethylenedioxythiophene) and Prussian blue , 2006 .

[36]  Reshef Tenne,et al.  A light-variation insensitive high efficiency solar cell , 1987, Nature.

[37]  Kuo-Chuan Ho,et al.  A novel photoelectrochromic device with dual application based on poly(3,4-alkylenedioxythiophene) thin film and an organic dye , 2008 .

[38]  J. Reynolds,et al.  Electrochemistry of Poly(3,4‐alkylenedioxythiophene) Derivatives , 2003 .