Stochastic Adaptive Search Methods: Theory and Implementation
暂无分享,去创建一个
[1] Zelda B. Zabinsky,et al. Pure adaptive search for finite global optimization , 1995, Math. Program..
[2] Robert L. Smith,et al. Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..
[3] Hao Huang,et al. Adaptive probabilistic branch and bound with confidence intervals for level set approximation , 2013, 2013 Winter Simulations Conference (WSC).
[4] Santosh S. Vempala,et al. Solving convex programs by random walks , 2004, JACM.
[5] Robert L. Smith,et al. Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles , 2009, Oper. Res..
[6] P. Moral,et al. On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .
[7] Robert L. Smith,et al. Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..
[8] Robert L. Smith,et al. Implementing pure adaptive search for global optimization using Markov chain sampling , 2001, J. Glob. Optim..
[9] László Lovász,et al. Hit-and-run mixes fast , 1999, Math. Program..
[10] Z. Zabinsky. Random Search Algorithms , 2010 .
[11] S. Vempala,et al. Hit-and-Run from a Corner , 2006 .
[12] Graham R. Wood,et al. Backtracking Adaptive Search: Distribution of Number of Iterations to Convergence , 2006 .
[13] H. Romeijn,et al. New Reflection Generator for Simulated Annealing in Mixed-Integer/Continuous Global Optimization , 1999 .
[14] Zelda B. Zabinsky,et al. Stochastic Methods for Practical Global Optimization , 1998, J. Glob. Optim..
[15] Lieberman,et al. Introduction To Operations Research Eight Edition (Pending)HIlang) , 2005 .
[16] Zelda B. Zabinsky,et al. Optimization of Algorithmic Parameters using a Meta-Control Approach* , 2006, J. Glob. Optim..
[17] Robert L. Smith,et al. An analytically derived cooling schedule for simulated annealing , 2007, J. Glob. Optim..
[18] Zelda B. Zabinsky,et al. Stochastic Adaptive Search for Global Optimization , 2003 .
[19] Birna P. Kristinsdottir,et al. Hesitant adaptive search: the distribution of the number of iterations to convergence , 2001, Math. Program..
[20] Graham R. Wood,et al. Generating functions and the performance of backtracking adaptive search , 2007, J. Glob. Optim..
[21] H. Zimmermann. Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .
[22] Kalyanmoy Deb,et al. Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.
[23] Robert L. Smith,et al. Pattern discrete and mixed Hit-and-Run for global optimization , 2011, J. Glob. Optim..
[24] P. Diaconis,et al. HIT AND RUN AS A UNIFYING DEVICE , 2007 .
[25] Santosh S. Vempala,et al. Simulated Annealing for Convex Optimization , 2004 .
[26] Graham R. Wood,et al. Grover's Quantum Algorithm Applied to Global Optimization , 2005, SIAM J. Optim..
[27] W. Kohn,et al. Meta-control of an interacting-particle algorithm for global optimization , 2010 .
[28] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[29] Wei Wang,et al. Adaptive probabilistic branch and bound for level set approximation , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).
[30] Robert L. Smith,et al. Pure adaptive search in monte carlo optimization , 1989, Math. Program..
[31] Zelda B. Zabinsky,et al. Expected hitting times for Backtracking Adaptive Search , 2004 .
[32] Robert L. Smith,et al. Pure adaptive search in global optimization , 1992, Math. Program..
[33] Zelda B. Zabinsky. Stochastic Search Methods for Global Optimization , 2011 .
[34] James C. Spall,et al. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .
[35] Zelda B. Zabinsky,et al. Global optimization of composite laminates using improving hit and run , 1992 .
[36] Claude J. P. Bélisle. Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .
[37] Y. Ho,et al. Ordinal Optimization: Soft Optimization for Hard Problems , 2007 .
[38] Robert L. Smith,et al. Direction Choice for Accelerated Convergence in Hit-and-Run Sampling , 1998, Oper. Res..
[39] Ernst-Georg Krause,et al. Biochemical mechanisms in heart function , 1998 .
[40] R. Tyrrell Rockafellar,et al. Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .
[41] Robert L. Smith,et al. An analysis of a variation of hit-and-run for uniform sampling from general regions , 2011, TOMC.
[42] Graham R. Wood,et al. Implementing Pure Adaptive Search with Grover's Quantum Algorithm , 2003 .
[43] Robert L. Smith,et al. Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..
[44] P. Moral. Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .
[45] Jay L. Devore,et al. Probability and statistics for engineering and the sciences , 1982 .
[46] Birna P. Kristinsdottir,et al. DISCRETE BACKTRACKING ADAPTIVE SEARCH FOR GLOBAL OPTIMIZATION , 2002 .
[47] Graham R. Wood,et al. Hesitant adaptive search for global optimisation , 1998, Math. Program..
[48] S. Vavasis. COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION: A SURVEY , 1995 .
[49] Zelda B. Zabinsky,et al. A Case Study: Composite Structure Design Optimization , 2006 .
[50] M. Dyer. Computing the volume of convex bodies : a case where randomness provably helps , 1991 .
[51] Frederick S. Hillier,et al. Introduction of Operations Research , 1967 .
[52] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[53] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[54] Wei Wang,et al. Adaptive parameterized improving hit-and-run for global optimization , 2009, Optim. Methods Softw..
[55] Zelda B. Zabinsky,et al. Stochastic Adaptive Search , 2002 .
[56] Robert L. Smith,et al. Simulated Annealing and Adaptive Search in Global Optimization , 1994, Probability in the Engineering and Informational Sciences.
[57] Samuel H. Brooks. A Discussion of Random Methods for Seeking Maxima , 1958 .
[58] J D Pinter,et al. Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .
[59] Alistair Sinclair,et al. Random Walks on Truncated Cubes and Sampling 0-1 Knapsack Solutions , 2004, SIAM J. Comput..
[60] Zelda B. Zabinsky,et al. Stopping and restarting strategy for stochastic sequential search in global optimization , 2010, J. Glob. Optim..
[61] Zelda B. Zabinsky,et al. Pattern Hit-and-Run for sampling efficiently on polytopes , 2012, Oper. Res. Lett..
[62] Ronald L. Rardin,et al. Optimization in operations research , 1997 .
[63] Roger J.-B. Wets,et al. Minimization by Random Search Techniques , 1981, Math. Oper. Res..
[64] Zelda B. Zabinsky,et al. Multi-particle Simulated Annealing , 2007 .
[65] Zelda B. Zabinsky,et al. The interacting-particle algorithm with dynamic heating and cooling , 2009, J. Glob. Optim..