Stochastic Adaptive Search Methods: Theory and Implementation

Random search algorithms are very useful for simulation optimization, because they are relatively easy to implement and typically find a “good” solution quickly. One drawback is that strong convergence results to a global optimum require strong assumptions on the structure of the problem.

[1]  Zelda B. Zabinsky,et al.  Pure adaptive search for finite global optimization , 1995, Math. Program..

[2]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[3]  Hao Huang,et al.  Adaptive probabilistic branch and bound with confidence intervals for level set approximation , 2013, 2013 Winter Simulations Conference (WSC).

[4]  Santosh S. Vempala,et al.  Solving convex programs by random walks , 2004, JACM.

[5]  Robert L. Smith,et al.  Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles , 2009, Oper. Res..

[6]  P. Moral,et al.  On the Convergence and the Applications of the Generalized Simulated Annealing , 1999 .

[7]  Robert L. Smith,et al.  Hit-and-Run Algorithms for Generating Multivariate Distributions , 1993, Math. Oper. Res..

[8]  Robert L. Smith,et al.  Implementing pure adaptive search for global optimization using Markov chain sampling , 2001, J. Glob. Optim..

[9]  László Lovász,et al.  Hit-and-run mixes fast , 1999, Math. Program..

[10]  Z. Zabinsky Random Search Algorithms , 2010 .

[11]  S. Vempala,et al.  Hit-and-Run from a Corner , 2006 .

[12]  Graham R. Wood,et al.  Backtracking Adaptive Search: Distribution of Number of Iterations to Convergence , 2006 .

[13]  H. Romeijn,et al.  New Reflection Generator for Simulated Annealing in Mixed-Integer/Continuous Global Optimization , 1999 .

[14]  Zelda B. Zabinsky,et al.  Stochastic Methods for Practical Global Optimization , 1998, J. Glob. Optim..

[15]  Lieberman,et al.  Introduction To Operations Research Eight Edition (Pending)HIlang) , 2005 .

[16]  Zelda B. Zabinsky,et al.  Optimization of Algorithmic Parameters using a Meta-Control Approach* , 2006, J. Glob. Optim..

[17]  Robert L. Smith,et al.  An analytically derived cooling schedule for simulated annealing , 2007, J. Glob. Optim..

[18]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[19]  Birna P. Kristinsdottir,et al.  Hesitant adaptive search: the distribution of the number of iterations to convergence , 2001, Math. Program..

[20]  Graham R. Wood,et al.  Generating functions and the performance of backtracking adaptive search , 2007, J. Glob. Optim..

[21]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[22]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[23]  Robert L. Smith,et al.  Pattern discrete and mixed Hit-and-Run for global optimization , 2011, J. Glob. Optim..

[24]  P. Diaconis,et al.  HIT AND RUN AS A UNIFYING DEVICE , 2007 .

[25]  Santosh S. Vempala,et al.  Simulated Annealing for Convex Optimization , 2004 .

[26]  Graham R. Wood,et al.  Grover's Quantum Algorithm Applied to Global Optimization , 2005, SIAM J. Optim..

[27]  W. Kohn,et al.  Meta-control of an interacting-particle algorithm for global optimization , 2010 .

[28]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[29]  Wei Wang,et al.  Adaptive probabilistic branch and bound for level set approximation , 2011, Proceedings of the 2011 Winter Simulation Conference (WSC).

[30]  Robert L. Smith,et al.  Pure adaptive search in monte carlo optimization , 1989, Math. Program..

[31]  Zelda B. Zabinsky,et al.  Expected hitting times for Backtracking Adaptive Search , 2004 .

[32]  Robert L. Smith,et al.  Pure adaptive search in global optimization , 1992, Math. Program..

[33]  Zelda B. Zabinsky Stochastic Search Methods for Global Optimization , 2011 .

[34]  James C. Spall,et al.  Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control (Spall, J.C. , 2007 .

[35]  Zelda B. Zabinsky,et al.  Global optimization of composite laminates using improving hit and run , 1992 .

[36]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[37]  Y. Ho,et al.  Ordinal Optimization: Soft Optimization for Hard Problems , 2007 .

[38]  Robert L. Smith,et al.  Direction Choice for Accelerated Convergence in Hit-and-Run Sampling , 1998, Oper. Res..

[39]  Ernst-Georg Krause,et al.  Biochemical mechanisms in heart function , 1998 .

[40]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[41]  Robert L. Smith,et al.  An analysis of a variation of hit-and-run for uniform sampling from general regions , 2011, TOMC.

[42]  Graham R. Wood,et al.  Implementing Pure Adaptive Search with Grover's Quantum Algorithm , 2003 .

[43]  Robert L. Smith,et al.  Improving Hit-and-Run for global optimization , 1993, J. Glob. Optim..

[44]  P. Moral Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications , 2004 .

[45]  Jay L. Devore,et al.  Probability and statistics for engineering and the sciences , 1982 .

[46]  Birna P. Kristinsdottir,et al.  DISCRETE BACKTRACKING ADAPTIVE SEARCH FOR GLOBAL OPTIMIZATION , 2002 .

[47]  Graham R. Wood,et al.  Hesitant adaptive search for global optimisation , 1998, Math. Program..

[48]  S. Vavasis COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION: A SURVEY , 1995 .

[49]  Zelda B. Zabinsky,et al.  A Case Study: Composite Structure Design Optimization , 2006 .

[50]  M. Dyer Computing the volume of convex bodies : a case where randomness provably helps , 1991 .

[51]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[52]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[53]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[54]  Wei Wang,et al.  Adaptive parameterized improving hit-and-run for global optimization , 2009, Optim. Methods Softw..

[55]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search , 2002 .

[56]  Robert L. Smith,et al.  Simulated Annealing and Adaptive Search in Global Optimization , 1994, Probability in the Engineering and Informational Sciences.

[57]  Samuel H. Brooks A Discussion of Random Methods for Seeking Maxima , 1958 .

[58]  J D Pinter,et al.  Global Optimization in Action—Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications , 2010 .

[59]  Alistair Sinclair,et al.  Random Walks on Truncated Cubes and Sampling 0-1 Knapsack Solutions , 2004, SIAM J. Comput..

[60]  Zelda B. Zabinsky,et al.  Stopping and restarting strategy for stochastic sequential search in global optimization , 2010, J. Glob. Optim..

[61]  Zelda B. Zabinsky,et al.  Pattern Hit-and-Run for sampling efficiently on polytopes , 2012, Oper. Res. Lett..

[62]  Ronald L. Rardin,et al.  Optimization in operations research , 1997 .

[63]  Roger J.-B. Wets,et al.  Minimization by Random Search Techniques , 1981, Math. Oper. Res..

[64]  Zelda B. Zabinsky,et al.  Multi-particle Simulated Annealing , 2007 .

[65]  Zelda B. Zabinsky,et al.  The interacting-particle algorithm with dynamic heating and cooling , 2009, J. Glob. Optim..