Underwater and water-assisted laser processing: Part 1-general features, steam cleaning and shock processing [review article]

Abstract Water is always present in laser processing in air: as vapor, condensate or adsorbate. Water is the working environment in underwater processing—but it can also be added on purpose to gain better results: to avoid redeposition of debris, to cool the material, to increase plasma pressure or to conduct light. Water can also act as a chemical reagent. The first part of the article will review the advantages and disadvantages of laser processing in the presence of water, light transmission by water, and the two most mature methods of water-assisted laser processing: steam cleaning and shock processing.

[1]  Park,et al.  Optical reflectance and scattering studies of nucleation and growth of bubbles at a liquid-solid interface induced by pulsed laser heating. , 1993, Physical review letters.

[2]  P. Ballard,et al.  Physical study of laser-produced plasma in confined geometry , 1990 .

[3]  G. Vereecke,et al.  Laser-assisted removal of particles on silicon wafers , 1999 .

[4]  Yongfeng Lu,et al.  Laser surface cleaning: basic understanding, engineering efforts, and technical barriers , 2000, International Symposium on Laser Precision Microfabrication.

[5]  Yongfeng Lu,et al.  Laser removal of particles from magnetic head sliders , 1996 .

[6]  Yongfeng Lu,et al.  A Theoretical Model for Laser Cleaning of Microparticles in a Thin Liquid Layer , 1998 .

[7]  Park,et al.  Enhanced acoustic cavitation following laser-induced bubble formation: Long-term memory effect. , 1994, Physical review letters.

[8]  R. Fabbro,et al.  Wavelength dependent of laser shock-wave generation in the water-confinement regime , 1999 .

[9]  Christopher J. Lawrence,et al.  Suspension mechanics for particle contamination control , 1988 .

[10]  Remy Fabbro,et al.  Modifications of mechanical and electrochemical properties of stainless steel surfaces by laser shock processing , 1997, Other Conferences.

[11]  Werner Zapka,et al.  Laser‐cleaning techniques for removal of surface particulates , 1992 .

[12]  G. A. Shafeev,et al.  Spatially confined laser-induced damage of Si under a liquid layer , 1992 .

[13]  Robert Donovan,et al.  Effects of Particulate Size, Composition, and Medium on Silicon-Wafer Cleaning , 1989 .

[14]  G. Vancso,et al.  Detection, adhesion and removal , 2002 .

[15]  Michel Jeandin,et al.  LASER SHOCK SURFACE TREATMENT OF Ni-BASED SUPERALLOYS , 1990 .

[16]  Susan D. Allen,et al.  CO2 laser assisted particle removal threshold measurements , 1992 .

[17]  Wing P. Leung,et al.  Laser cleaning: Laser‐induced removal of particles from surfaces , 1993 .

[18]  Lloyd A. Hackel,et al.  Surface prestressing to improve fatigue strength of components by laser shot peening , 2000 .

[19]  Laurent Berthe,et al.  Laser shock processing of materials: characterization and application of the process , 1997, Other Conferences.

[20]  C. York,et al.  Laser‐induced deformation modes in thin metal targets , 1973 .

[21]  S. Allen,et al.  Laser‐assisted micron scale particle removal , 1990 .

[22]  M. Jeandin,et al.  LASER SHOCK COMPACTION OF POROUS MATERIALS , 1991 .

[23]  Michel Meunier,et al.  CO2 laser‐assisted removal of submicron particles from solid surfaces , 1996 .

[24]  C. Grigoropoulos,et al.  Transient Temperature During the Vaporization of Liquid on a Pulsed Laser-Heated Solid Surface , 1996 .

[25]  Andreas Schilling,et al.  Laser cleaning of silicon surfaces , 1998, Photonics West.

[26]  Yongfeng Lu,et al.  Laser cleaning of silicon surface with deposition of different liquid films , 1999 .

[27]  N. Aoki,et al.  Underwater Direct Metal Processing by High-Power Copper Vapour Laser , 1996 .

[28]  Costas P. Grigoropoulos,et al.  Liquid-assisted pulsed laser cleaning using near-infrared and ultraviolet radiation , 1999 .

[29]  A. C. Tam,et al.  A practical excimer laser-based cleaning tool for removal of surface contaminants , 1994 .

[30]  T. S. Low,et al.  Theoretical model and experimental study for dry and steam laser cleaning , 1998, Other Conferences.

[31]  Michel Jeandin,et al.  Surface modification using high power lasers: Influence of surface characteristics on properties of laser processed materials , 1997 .

[32]  K. Sugioka,et al.  Laser Applications in Microelectronic and Optoelectronic Manufacturing V. Volume 3933, Held at San Jose, CA, on 24-26 January 2000 , 2000 .

[33]  D. N. Williams,et al.  Laser shock‐induced microstructural and mechanical property changes in 7075 aluminum , 1972 .

[34]  A. Tam,et al.  “Laser cleaning” removes particles from surfaces , 1993 .

[35]  B. P. Fairand,et al.  Laser generation of high‐amplitude stress waves in materials , 1979 .

[36]  M. Jeandin,et al.  Dry sliding wear behaviour of a P/M ferrous alloy superficially densified by laser shock processing , 1994 .

[37]  C. S. Coffey A model for dislocation sources in a shock or impact environment , 1987 .

[38]  P. Forget,et al.  Déformation à l'échelle cristallographique d'alliages à base de nickel mono- et polycristallins par choc laser en mode confiné , 1995 .

[39]  Patrick Ballard,et al.  Contraintes résiduelles induites par impact rapide. Application au choc-laser. , 1991 .

[40]  Johannes Boneberg,et al.  Surface acceleration during dry laser cleaning of silicon , 1999 .

[41]  Y. Sano,et al.  Residual Stress Improvement Mechanism on Metal Material by Underwater Laser Irradiation. , 2000 .

[42]  R. Fabbro,et al.  Experimental study of laser-driven shock waves in stainless steels , 1998 .

[43]  E. Sacher,et al.  The modeling of excimer laser particle removal from hydrophilic silicon surfaces , 2000 .

[44]  R. Fabbro,et al.  Generation of shock waves by laser‐induced plasma in confined geometry , 1993 .

[45]  P. Leiderer,et al.  Optical field enhancement effects in laser-assisted particle removal , 2001 .

[46]  D. Kane,et al.  A quantitative analysis of single pulse ultraviolet dry laser cleaning , 1999 .

[47]  R. Allen Bowling,et al.  An Analysis of Particle Adhesion on Semiconductor Surfaces , 1985 .

[48]  J. Siegel,et al.  A comparison of ns and ps steam laser cleaning of Si surfaces , 1999 .

[49]  A. Tam,et al.  Efficient pulsed laser removal of 0.2 μm sized particles from a solid surface , 1991 .

[50]  Hee K. Park,et al.  Optical probing of the temperature transients during pulsed-laser induced boiling of liquids , 1996 .

[51]  E. Arakawa,et al.  Optical Absorption of Liquid Water in the Vacuum Ultraviolet , 1972 .

[52]  Yongfeng Lu,et al.  Laser induced removal of spherical particles from silicon wafers , 2000 .

[53]  R. G. Jung,et al.  Quantitative assessment of laser‐induced stress waves generated at confined surfaces , 1974 .

[54]  R. Fabbro,et al.  Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization , 1998 .

[55]  N. Arnold,et al.  Laser cleaning of polymer surfaces , 2001 .

[56]  Mechanism of improvement on fatigue life of metal by laser-excited shock waves , 2001 .

[57]  R. Fabbro,et al.  Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6-3 ns laser pulses in a confined regime with water , 2000 .

[58]  M. B. Ranade,et al.  Adhesion and Removal of Fine Particles on Surfaces , 1987 .

[59]  R. Fabbro,et al.  Two‐dimensional study of shock breakout at the rear face of laser irradiated metallic targets , 1988 .

[60]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[61]  Johannes Boneberg,et al.  Universal threshold for the steam laser cleaning of submicron spherical particles from silicon , 2000, Applied Physics A.

[62]  R. Fabbro,et al.  SHOCK WAVES FROM A WATER-CONFINED LASER-GENERATED PLASMA , 1997 .

[63]  F. Lawrence,et al.  Laser shock‐induced mechanical and microstructural modification of welded maraging steel , 1990 .

[64]  M. Jeandin,et al.  Cladding by laser shock processing , 1994 .

[65]  J. M. Lee,et al.  Angular laser cleaning for effective removal of particles. from a solid surface , 2000 .

[66]  Ken Watkins,et al.  In-process monitoring techniques for laser cleaning , 2000 .

[67]  Laurent Berthe,et al.  Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour , 1998 .

[68]  Costas P. Grigoropoulos,et al.  Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface , 1996 .

[69]  Werner Zapka,et al.  Efficient laser cleaning of small particulates using pulsed laser irradiation synchronized with liquid-film deposition , 1991, Other Conferences.

[70]  Laurent Berthe,et al.  Physics and applications of laser-shock processing , 1998 .

[71]  Remy Fabbro,et al.  RESIDUAL STRESSES INDUCED BY LASER-SHOCKS , 1991 .

[72]  Laurent Berthe,et al.  Laser shock processing of materials: experimental study of breakdown plasma effects at the surface of confining water , 1997, Other Conferences.

[73]  P. Leung,et al.  Transmission studies of explosive vaporization of a transparent liquid film on an opaque solid surface induced by excimer‐laser‐pulsed irradiation , 1992 .

[74]  P. Leung,et al.  Photodeflection probing of the explosion of a liquid film in contact with a solid heated by pulsed excimer laser irradiation , 1993 .

[75]  Remy Fabbro,et al.  Laser-shock processing of materials and related measurements , 1998, Other Conferences.

[76]  Laurent Berthe,et al.  Current trends in laser shock processing , 1998 .

[77]  R. Fabbro,et al.  The generation of laser shock waves in a water-confinement regime with 50 ns and 150 ns XeCl excimer laser pulses , 2000 .

[78]  R. Fabbro,et al.  Laser shock processing: a review of the physics and applications , 1995, Optical and Quantum Electronics.

[79]  Susan D. Allen,et al.  Threshold measurements in laser-assisted particle removal , 1991, Other Conferences.

[80]  Naruhiko Mukai,et al.  Residual stress improvement in metal surface by underwater laser irradiation , 1997 .

[81]  R. Fabbro,et al.  Experimental study of the transmission of breakdown plasma generated during laser shock processing , 1998 .

[82]  Todd E. Lizotte,et al.  Chemical-free cleaning using excimer lasers , 1996, Photonics West.

[83]  B. P. Fairand,et al.  Effect of water and paint coatings on the magnitude of laser-generated shocks☆ , 1976 .

[84]  Hee K. Park,et al.  Optical and acoustic study of nucleation and growth of bubbles at a liquid-solid interface induced by nanosecond-pulsed-laser heating , 1994 .

[85]  K. Mittal,et al.  Particles on Surfaces 1 , 1989 .

[86]  Masaki Yoda,et al.  Process and application of shock compression by nanosecond pulses of frequency-doubled Nd:YAG laser , 2000, Advanced High-Power Lasers and Applications.

[87]  E. Sacher,et al.  CO 2 Laser Cleaning of Hydrophilic Oxidized Silicon Surfaces , 1995 .

[88]  S. D. Allen,et al.  Laser-assisted particle removal from silicon surfaces , 1993 .

[89]  Laurent Berthe,et al.  Laser shock processing of materials: study of laser-induced breakdown in water confinement regime , 1996, Other Conferences.

[90]  R. Fabbro,et al.  Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour , 1996 .

[91]  E. Sacher,et al.  The effects of hydrogen bonds on the adhesion of inorganic oxide particles on hydrophilic silicon surfaces , 1999 .

[92]  R. D. Griffin,et al.  Interferometric studies of the pressure of a confined laser‐heated plasma , 1986 .

[93]  S. Allen,et al.  Shock wave analysis of laser assisted particle removal , 1993 .

[94]  J. Fox Effect of water and paint coatings on laser‐irradiated targets , 1974 .

[95]  Michel Meunier,et al.  Excimer laser cleaning for microelectronics: modeling, applications, and challenges , 1999, Photonics West.

[96]  Yongfeng Lu,et al.  Laser surface cleaning of electronic materials , 1999, Photonics West.

[97]  P. Leiderer,et al.  Bubble nucleation and pressure generation during laser cleaning of surfaces , 1997 .

[98]  Costas P. Grigoropoulos,et al.  Laser cleaning of surface contaminants , 1998 .