Structure dependence and reaction mechanism of CO oxidation: A model study on macroporous CeO2 and CeO2-ZrO2 catalysts

[1]  P. Guardia,et al.  The effect of Au domain size on the CO oxidation catalytic activity of colloidal Au–FeOx dumbbell-like heterodimers , 2016 .

[2]  G. Stucky,et al.  Supplementary Material for Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts , 2015 .

[3]  Qiao Zhang,et al.  Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. , 2015, Nanoscale.

[4]  J. Silvestre-Albero,et al.  Influence of the metal precursor on the catalytic behavior of Pt/ceria catalysts in the preferential oxidation of CO in the presence of H₂ (PROX). , 2015, Journal of colloid and interface science.

[5]  G. Guo,et al.  Au–Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation , 2015 .

[6]  B. M. Reddy,et al.  Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures , 2015 .

[7]  Jun Wang,et al.  Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction , 2014 .

[8]  Shuo Zhang,et al.  CO Oxidation Activity at Room Temperature over Au/CeO2 Catalysts: Disclosure of Induction Period and Humidity Effect , 2014 .

[9]  J. Calvino,et al.  Reversible deactivation of a Au/Ce0.62Zr0.38O2 catalyst in CO oxidation: A systematic study of CO2-triggered carbonate inhibition , 2014 .

[10]  F. Kapteijn,et al.  Stabilized gold on cerium-modified cryptomelane: Highly active in low-temperature CO oxidation , 2014 .

[11]  Yang Jiang,et al.  Au/3DOM Co3O4: highly active nanocatalysts for the oxidation of carbon monoxide and toluene. , 2013, Nanoscale.

[12]  G. Guo,et al.  Au/3DOM LaCoO3: High-performance catalysts for the oxidation of carbon monoxide and toluene , 2013 .

[13]  D. Ihiawakrim,et al.  Three-Dimensional Tomographic Analyses of CeO2 Nanoparticles , 2013 .

[14]  M. Schmal,et al.  Synthesis of CeO2 and CeZrO2 mixed oxide nanostructured catalysts for the iso-syntheses reaction , 2013 .

[15]  Xue-qing Gong,et al.  A DFT+U study of the lattice oxygen reactivity toward direct CO oxidation on the CeO2(111) and (110) surfaces. , 2012, Physical chemistry chemical physics : PCCP.

[16]  G. Henkelman,et al.  CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters. , 2012, The journal of physical chemistry letters.

[17]  Gengshen Hu,et al.  CO oxidation over CuO/Ce1−xCuxO2−δ and Ce1−xCuxO2−δ catalysts: Synergetic effects and kinetic study , 2012 .

[18]  Jian Liu,et al.  The catalysts of three-dimensionally ordered macroporous Ce1−xZrxO2-supported gold nanoparticles for soot combustion: The metal–support interaction , 2012 .

[19]  Zili Wu,et al.  On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes , 2012 .

[20]  Yunfa Chen,et al.  Comparative study of CeO2 and doped CeO2 with tailored oxygen vacancies for CO oxidation. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  Jian Liu,et al.  Comparative study on the preparation, characterization and catalytic performances of 3DOM Ce-based materials for the combustion of diesel soot , 2011 .

[22]  Weixin Huang,et al.  Synergetic Effects of PdO Species on CO Oxidation over PdO–CeO2 Catalysts , 2011 .

[23]  Hongjing Wu,et al.  Shape effect of microstructured CeO2 with various morphologies on CO catalytic oxidation , 2011 .

[24]  F. Zhou,et al.  Low-temperature CO oxidation over supported Pt, Pd catalysts: Particular role of FeOx support for oxygen supply during reactions , 2010 .

[25]  Hua Wang,et al.  Syngas production from methane and air via a redox process using Ce-Fe mixed oxides as oxygen carriers , 2010 .

[26]  G. Lu,et al.  Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. , 2010, Journal of the American Chemical Society.

[27]  A. Martínez-Arias,et al.  CO-TPR-DRIFTS-MS in situ study of CuO/Ce1−xTbxO2−y (x = 0, 0.2 and 0.5) catalysts: Support effects on redox properties and CO oxidation catalysis , 2009 .

[28]  Christopher S. Polster,et al.  Study of active sites and mechanism responsible for highly selective CO oxidation in H2 rich atmospheres on a mixed Cu and Ce oxide catalyst , 2009 .

[29]  Zhong-Ning Xu,et al.  Morphology effects of nanocrystalline CeO2 on the preferential CO oxidation in H-2-rich gas over Au/CeO2 catalyst , 2009 .

[30]  Kangnian Fan,et al.  Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation , 2009 .

[31]  A. Bueno-López,et al.  Combined removal of diesel soot particulates and NOx over CeO2–ZrO2 mixed oxides , 2008 .

[32]  D. Weng,et al.  Modification of CeO2–ZrO2 mixed oxides by coprecipitated/impregnated Sr: Effect on the microstructure and oxygen storage capacity , 2008 .

[33]  Ming-Hsien Lee,et al.  Au on (111) and (110) surfaces of CeO2: A density-functional theory study , 2008 .

[34]  Xiang Li,et al.  Mesoporous Co3O4–CeO2 and Pd/Co3O4–CeO2 catalysts: Synthesis, characterization and mechanistic study of their catalytic properties for low-temperature CO oxidation , 2008 .

[35]  M. Centeno,et al.  Surface Dynamics of Au/CeO2 Catalysts during CO Oxidation , 2007 .

[36]  M. V. Ganduglia-Pirovano,et al.  Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges , 2007 .

[37]  Takashi Minami,et al.  Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction , 2006 .

[38]  M. Nolan,et al.  The surface dependence of CO adsorption on Ceria. , 2006, The journal of physical chemistry. B.

[39]  R. Schlögl,et al.  Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I: Oxidation state and surface species on Pt/CeO2 under reaction conditions , 2006 .

[40]  Ya-Wen Zhang,et al.  Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. , 2005, The journal of physical chemistry. B.

[41]  J. Llorca,et al.  Surface-structure sensitivity of CO oxidation over polycrystalline ceria powders , 2005 .

[42]  Ling Zhou,et al.  Electron Localization Determines Defect Formation on Ceria Substrates , 2005, Science.

[43]  Qing Peng,et al.  Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes , 2005 .

[44]  D. Uner,et al.  Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts , 2004 .

[45]  M. Giona,et al.  On the mechanism of fast oxygen storage and release in ceria-zirconia model catalysts , 2004 .

[46]  B. Gates,et al.  Activation of Au/γ-Al2O3 Catalysts for CO Oxidation: Characterization by X-ray Absorption Near Edge Structure and Temperature Programmed Reduction , 2004 .

[47]  Jianguo Wang,et al.  Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents , 2004 .

[48]  M. Fernández-García,et al.  EPR study of the photoassisted formation of radicals on CeO2 nanoparticles employed for toluene photooxidation , 2004 .

[49]  Alexis T. Bell,et al.  Effects of molybdena on the catalytic properties of vanadia domains supported on alumina for oxidative dehydrogenation of propane , 2004 .

[50]  Ataullah Khan,et al.  Structural Characterization of CeO2−MO2 (M = Si4+, Ti4+, and Zr4+) Mixed Oxides by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and Other Techniques , 2003 .

[51]  M. S. Hegde,et al.  Promoting Effect of CeO2 in Combustion Synthesized Pt/CeO2 Catalyst for CO Oxidation , 2003 .

[52]  J. Herrmann,et al.  Role of the Ceria–Zirconia Support in the Reactivity of Platinum and Palladium Catalysts for Methane Total Oxidation under Lean Conditions , 2001 .

[53]  David Thompson,et al.  Gold-catalysed oxidation of carbon monoxide , 2000 .

[54]  D. Duprez,et al.  Oxygen Mobility in CeO2 and CexZr(1-x)O2 Compounds: Study by CO Transient Oxidation and 18O/16O Isotopic Exchange , 1999 .

[55]  V. Lunin,et al.  Red–ox properties and phase composition of CeO2–ZrO2 and Y2O3–CeO2–ZrO2 solid solutions , 1999 .

[56]  J. Grunwaldt,et al.  Preparation of Supported Gold Catalysts for Low-Temperature CO Oxidation via “Size-Controlled” Gold Colloids , 1999 .

[57]  M. Vannice,et al.  Determination of the Dispersion and Surface Oxidation States of Supported Cu Catalysts , 1998 .

[58]  C. Lamberti,et al.  FTIR study of the interaction of CO with pure and silica-supported copper(I) oxide , 1998 .

[59]  A. Trovarelli,et al.  Catalytic Properties of Ceria and CeO2-Containing Materials , 1996 .

[60]  K. Hadjiivanov,et al.  IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: σ and π components of the Cu+—CO bond , 1996 .

[61]  R. Gorte,et al.  Evidence for a Second CO Oxidation Mechanism on Rh/Ceria , 1993 .

[62]  T. Shido,et al.  Regulation of reaction intermediate by reactant in the water-gas shift reaction on CeO2, in relation to reactant-promoted mechanism , 1992 .

[63]  K. G. Brown,et al.  A proposed mechanism for Pt/SnOx-catalyzed CO oxidation , 1991 .

[64]  G. Yahav,et al.  Modelling catalyst—support interactions in carbon monoxide oxidation catalysed by Pd/SnO2 , 1989 .

[65]  K. Domen,et al.  Adsorption of carbon monoxide and carbon dioxide on cerium oxide studied by Fourier-transform infrared spectroscopy. Part 2.—Formation of formate species on partially reduced CeO2 at room temperature , 1989 .

[66]  H. Creighton,et al.  General and inorganic chemistry , 1983 .