Microarray analysis of miRNA gene expression.

MicroRNAs (miRNAs) are small, noncoding RNAs that regulate the expression of target mRNAs. Although thousands of miRNAs have been identified, few have been functionally linked to specific biological pathways. Microarray-based expression analysis is an ideal strategy for identifying candidate miRNAs that correlate with biological pathways and for generating molecular signatures of disease states. This chapter will describe a simple, low-cost microarray platform optimized for miRNA expression analysis.

[1]  Pasko Rakic,et al.  Microarray analysis of microRNA expression in the developing mammalian brain , 2004, Genome Biology.

[2]  G. Igloi Nonradioactive labeling of RNA. , 1996, Analytical biochemistry.

[3]  V. Kim MicroRNA biogenesis: coordinated cropping and dicing , 2005, Nature Reviews Molecular Cell Biology.

[4]  Joel S Parker,et al.  Extensive post-transcriptional regulation of microRNAs and its implications for cancer. , 2006, Genes & development.

[5]  Seongjoon Koo,et al.  Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. , 2004, Nucleic acids research.

[6]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[7]  Zissimos Mourelatos,et al.  Microarray-based, high-throughput gene expression profiling of microRNAs , 2004, Nature Methods.

[8]  Lena Smirnova,et al.  The FASEB Journal • Research Communication Post-transcriptional regulation of the let-7 microRNA during neural cell specification , 2022 .

[9]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[11]  Yang Li,et al.  An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe , 2005, Nucleic acids research.

[12]  Joel S Parker,et al.  microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder , 2007, Genome Biology.

[13]  Vladimir Benes,et al.  A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). , 2006, RNA.

[14]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[15]  V. Velculescu,et al.  Implications of micro-RNA profiling for cancer diagnosis , 2006, Oncogene.

[16]  Sam Griffiths-Jones,et al.  miRBase: the microRNA sequence database. , 2006, Methods in molecular biology.

[17]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[18]  Laura Mariani,et al.  MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.

[19]  Rui Shi,et al.  Facile means for quantifying microRNA expression by real-time PCR. , 2005, BioTechniques.

[20]  Xuemei Chen,et al.  Methylation as a Crucial Step in Plant microRNA Biogenesis , 2005, Science.

[21]  Alicia Oshlack,et al.  Normalization of boutique two-color microarrays with a high proportion of differentially expressed probes , 2007, Genome Biology.

[22]  R. Plasterk,et al.  RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. , 2005, RNA.

[23]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[24]  R. Tibshirani,et al.  Significance analysis of microarrays applied to the ionizing radiation response , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[25]  G. Ruvkun,et al.  Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans , 1993, Cell.

[26]  D. Black,et al.  MicroRNAs regulate the expression of the alternative splicing factor nPTB during muscle development. , 2007, Genes & development.

[27]  Jeffrey Shelton,et al.  An optimized isolation and labeling platform for accurate microRNA expression profiling. , 2005, RNA.

[28]  Gordon K Smyth,et al.  Statistical Applications in Genetics and Molecular Biology Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2011 .

[29]  T. Okanoue,et al.  Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues , 2006, Oncogene.

[30]  G. Obernosterer,et al.  Post-transcriptional regulation of microRNA expression. , 2006, RNA.

[31]  A. Witteveen,et al.  Converting a breast cancer microarray signature into a high-throughput diagnostic test , 2006, BMC Genomics.

[32]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[33]  Martin Vingron,et al.  Variance stabilization applied to microarray data calibration and to the quantification of differential expression , 2002, ISMB.

[34]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[35]  R. Ach,et al.  Direct and sensitive miRNA profiling from low-input total RNA. , 2006, RNA.

[36]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[37]  H. Matsubara,et al.  MicroRNA-1 facilitates skeletal myogenic differentiation without affecting osteoblastic and adipogenic differentiation. , 2006, Biochemical and biophysical research communications.

[38]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[39]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[40]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[41]  Phillip D Zamore,et al.  microPrimer: the biogenesis and function of microRNA , 2005, Development.

[42]  Harvey F Lodish,et al.  Myogenic factors that regulate expression of muscle-specific microRNAs. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[43]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[44]  V. Ambros,et al.  Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. , 2005, Genes & development.

[45]  HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide , 2006, Nucleic acids research.

[46]  Grace X. Y. Zheng,et al.  Dynamic regulation of miRNA expression in ordered stages of cellular development. , 2007, Genes & development.

[47]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[48]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[49]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[50]  Ranit Aharonov,et al.  MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. , 2004, Genome research.

[51]  D. Allison,et al.  Microarray data analysis: from disarray to consolidation and consensus , 2006, Nature Reviews Genetics.

[52]  Quaid Morris,et al.  Probing microRNAs with microarrays: tissue specificity and functional inference. , 2004, RNA.

[53]  Rudolf Jaenisch,et al.  DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal , 2007, Nature Genetics.

[54]  K. Livak,et al.  Real-time quantification of microRNAs by stem–loop RT–PCR , 2005, Nucleic acids research.

[55]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[56]  Cheng Li,et al.  Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application , 2001, Genome Biology.

[57]  C. Croce,et al.  An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.