Application of Bottlebrush Block Copolymers as Photonic Crystals.

Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized.

[1]  C. M. Bates,et al.  Improving brush polymer infrared one-dimensional photonic crystals via linear polymer additives. , 2014, Journal of the American Chemical Society.

[2]  Sanjay Krishna,et al.  Design of plasmonic photonic crystal resonant cavities for polarization sensitive infrared photodetectors. , 2009, Optics express.

[3]  Yan Xia,et al.  Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement. , 2009, Journal of the American Chemical Society.

[4]  R. Grubbs,et al.  Synthesis of isocyanate-based brush block copolymers and their rapid self-assembly to infrared-reflecting photonic crystals. , 2012, Journal of the American Chemical Society.

[5]  Tsutomu Sawada,et al.  Photonic rubber sheets with tunable color by elastic deformation. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[6]  Jae-Hwang Lee,et al.  Large-Volume Self-Organization of Polymer/Nanoparticle Hybrids with Millimeter-Scale Grain Sizes Using Brush Block Copolymers. , 2015, Journal of the American Chemical Society.

[7]  S. Asher Superparamagnetic Colloidal Particles for Magnetically Controllable Photonic Crystals , 2002 .

[8]  J. Gong,et al.  Tunable one-dimensional photonic crystals from soft materials , 2015 .

[9]  Samuel J. Dalsin,et al.  Bottlebrush Block Polymers: Quantitative Theory and Experiments. , 2015, ACS nano.

[10]  J Alexander Liddle,et al.  Nanomanufacturing: A Perspective. , 2016, ACS nano.

[11]  R. Grubbs,et al.  Precisely tunable photonic crystals from rapidly self-assembling brush block copolymer blends. , 2012, Angewandte Chemie.

[12]  J. Rzayev,et al.  Large pore size nanoporous materials from the self-assembly of asymmetric bottlebrush block copolymers. , 2011, Nano letters.

[13]  Jun Hyuk Moon,et al.  Chemical aspects of three-dimensional photonic crystals. , 2010, Chemical reviews.

[14]  Augustine Urbas,et al.  Bicontinuous Cubic Block Copolymer Photonic Crystals , 2002 .

[15]  Yiyong Mai,et al.  Self-assembly of block copolymers. , 2012, Chemical Society reviews.

[16]  Joanna Aizenberg,et al.  Structural colour in colourimetric sensors and indicators , 2013 .

[17]  Jeremiah A. Johnson,et al.  Graft-through Synthesis and Assembly of Janus Bottlebrush Polymers from A-Branch-B Diblock Macromonomers. , 2016, Journal of the American Chemical Society.

[18]  Eugenia Kumacheva,et al.  Nanostructured polymers for photonics , 2008 .

[19]  E. Thomas,et al.  Self-Assembly of Block Copolymers for Photonic-Bandgap Materials , 2005 .

[20]  E. Thomas,et al.  Temperature‐Dependent Photonic Bandgap in a Self‐Assembled Hydrogen‐Bonded Liquid‐Crystalline Diblock Copolymer , 2002 .

[21]  K. Matyjaszewski,et al.  Structural Control of Poly(Methyl Methacrylate)-g-poly(Lactic Acid) Graft Copolymers by Atom Transfer Radical Polymerization (ATRP) , 2001 .

[22]  R. Grubbs,et al.  Highly ordered dielectric mirrors via the self-assembly of dendronized block copolymers. , 2013, Journal of the American Chemical Society.

[23]  Bumjoon J. Kim,et al.  Tailoring block copolymer and polymer blend morphology using nanoparticle surfactants , 2016 .

[24]  Yuanjin Zhao,et al.  Free-Standing Photonic Crystal Films with Gradient Structural Colors. , 2016, ACS applied materials & interfaces.

[25]  Rafael Verduzco,et al.  Structure, function, self-assembly, and applications of bottlebrush copolymers. , 2015, Chemical Society reviews.

[26]  Edwin L. Thomas,et al.  Mechanochromic Photonic Gels , 2013, Advanced materials.

[27]  G. Fredrickson,et al.  Block copolymer thermodynamics: theory and experiment. , 1990, Annual review of physical chemistry.

[28]  Samuel J. Dalsin,et al.  Linear Rheology of Polyolefin-Based Bottlebrush Polymers , 2015 .

[29]  Shik Shin,et al.  Electron Energy-Loss Spectroscopy Study of the Metal-Insulator Transition in (V1-xCrx)2O3 (x=0.012) , 1999 .

[30]  Sang Woo Kim,et al.  Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large , 2013 .

[31]  R. Norwood,et al.  Directed Assembly of Quantum Dots Using Brush Block Copolymers for Well-Ordered Nonlinear Optical Nanocomposites , 2016 .

[32]  Biswajit Sarkar,et al.  Block copolymer-nanoparticle composites: Structure, functional properties, and processing , 2015 .

[33]  R. Grubbs,et al.  Self-assembly of symmetric brush diblock copolymers. , 2013, ACS nano.

[34]  John A Rogers,et al.  Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Chong Cheng,et al.  Facile syntheses of cylindrical molecular brushes by a sequential RAFT and ROMP "grafting-through" methodology. , 2009, Journal of polymer science. Part A, Polymer chemistry.

[36]  Bradley K. Smith,et al.  A three-dimensional photonic crystal operating at infrared wavelengths , 1998, Nature.

[37]  R. Grubbs,et al.  Linear Rheological Response of a Series of Densely Branched Brush Polymers , 2011 .

[38]  J. Galisteo‐López,et al.  Self‐Assembled Photonic Structures , 2011, Advanced materials.

[39]  Wenhao Li,et al.  Block Copolymer Nanocomposites with High Refractive Index Contrast for One-Step Photonics. , 2016, ACS nano.

[40]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[41]  E. Yashima,et al.  Helical polymers: synthesis, structures, and functions. , 2009, Chemical reviews.

[42]  Paul V. Braun,et al.  Tunable Inverse Opal Hydrogel pH Sensors , 2003 .

[43]  P. Panine,et al.  Shear ordered diblock copolymers with tuneable optical properties. , 2011, Physical chemistry chemical physics : PCCP.

[44]  Toshiaki Tamamura,et al.  Photonic Crystal Using Anodic Porous Alumina , 1999 .

[45]  Gang Zhang,et al.  A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors , 2016 .

[46]  I. Hamley Nanostructure fabrication using block copolymers , 2003 .

[47]  Martin Maldovan,et al.  25th Anniversary Article: Ordered Polymer Structures for the Engineering of Photons and Phonons , 2013, Advanced materials.

[48]  Baoping Wang,et al.  Responsive Colloidal Crystal for Spectrometer Grating , 2014 .

[49]  F. Bates,et al.  Conformationally asymmetric block copolymers , 1997 .

[50]  E. Thomas,et al.  Self-Assembled Smectic Phases in Rod-Coil Block Copolymers , 1996, Science.

[51]  C. M. Bates,et al.  50th Anniversary Perspective: Block Polymers—Pure Potential , 2017 .

[52]  R. Grubbs,et al.  On the self-assembly of brush block copolymers in thin films. , 2013, ACS nano.

[53]  Dong Yang,et al.  Well-defined graft copolymers: from controlled synthesis to multipurpose applications. , 2011, Chemical Society reviews.

[54]  M. H. Naderi,et al.  Broadband photonic crystal antireflection , 2012 .

[55]  Axel H. E. Müller,et al.  Cylindrical polymer brushes , 2005 .

[56]  Dirk J. Broer,et al.  Stimuli-responsive photonic polymer coatings. , 2014, Chemical communications.

[57]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[58]  K. Wooley,et al.  ATRP from a norbornenyl-functionalized initiator : Balancing of complementary reactivity for the preparation of α-norbornenyl macromonomers/ω -haloalkyl macroinitiators , 2005 .

[59]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.

[60]  E. Thomas,et al.  Enthalpy-Driven Swelling of Photonic Block Polymer Films , 2016 .

[61]  N. Bowden,et al.  Synthesis of high molecular weight comb block copolymers and their assembly into ordered morphologies in the solid state. , 2007, Journal of the American Chemical Society.

[62]  R. G. Denning,et al.  Fabrication of photonic crystals for the visible spectrum by holographic lithography , 2000, Nature.

[63]  Eli Yablonovitch,et al.  Photonic band-gap crystals , 1993 .

[64]  J. Polte Fundamental growth principles of colloidal metal nanoparticles – a new perspective , 2015 .

[65]  Anders Karlsson,et al.  Photonic crystal optical filter based on contra-directional waveguide coupling , 2003 .

[66]  Jae-Hwang Lee,et al.  Thermally Tunable Metallodielectric Photonic Crystals from the Self‐Assembly of Brush Block Copolymers and Gold Nanoparticles , 2015 .

[67]  M. Möller,et al.  Visualization of macromolecules--a first step to manipulation and controlled response. , 2001, Chemical reviews.

[68]  J. Rzayev Molecular Bottlebrushes: New Opportunities in Nanomaterials Fabrication. , 2012, ACS macro letters.

[69]  R. Zentel,et al.  Chiral polyisocyanates, a special class of helical polymers , 2001 .

[70]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[71]  J. Rzayev Synthesis of Polystyrene−Polylactide Bottlebrush Block Copolymers and Their Melt Self-Assembly into Large Domain Nanostructures , 2009 .

[72]  P. Braun,et al.  Microporous materials: Electrochemically grown photonic crystals , 1999, Nature.

[73]  Hui Wang,et al.  Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors , 2013, Sensors.

[74]  N. Bowden,et al.  Investigation of the Assembly of Comb Block Copolymers in the Solid State , 2008 .

[75]  Krzysztof Matyjaszewski,et al.  Cylindrical molecular brushes: Synthesis, characterization, and properties , 2008 .

[76]  J. Joannopoulos,et al.  Block copolymers as photonic bandgap materials , 1999 .

[77]  Marc A. Hillmyer,et al.  Polydispersity and block copolymer self-assembly , 2008 .

[78]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[79]  R. Grubbs,et al.  Efficient Synthesis of Narrowly Dispersed Brush Polymers via Living Ring-Opening Metathesis Polymerization of Macromonomers , 2009 .

[80]  G. Bassou,et al.  Optical channel drop filters based on photonic crystal ring resonators , 2012 .

[81]  F. Schacher,et al.  Functional block copolymers: nanostructured materials with emerging applications. , 2012, Angewandte Chemie.

[82]  Y. Izumi,et al.  Conformational properties of cylindrical rod brushes consisting of a polystyrene main chain and poly(n-hexyl isocyanate) side chains , 2008 .

[83]  E. Thomas,et al.  Block Copolymer Photonic Gel for Mechanochromic Sensing , 2011, Advanced materials.

[84]  Kazuhide Ueno,et al.  An Electro‐ and Thermochromic Hydrogel as a Full‐Color Indicator , 2007 .

[85]  J. Ilavsky,et al.  Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self-Assembly into Large Domain Nanostructures , 2016 .

[86]  Nikos Hadjichristidis,et al.  Polymer‐Based Photonic Crystals , 2001 .

[87]  Marc A. Hillmyer,et al.  Influence of Polydispersity on the Self-Assembly of Diblock Copolymers , 2005 .

[88]  Yue Gai,et al.  Controlled supramolecular self-assembly of large nanoparticles in amphiphilic brush block copolymers. , 2015, Journal of the American Chemical Society.

[89]  M. Hillmyer,et al.  Perpendicular orientation of cylindrical domains upon solvent annealing thin films of polystyrene-b-polylactide , 2010 .

[90]  E. Han,et al.  Bulk and Thin Film Morphological Behavior of Broad Dispersity Poly(styrene-b-methyl methacrylate) Diblock Copolymers , 2013 .

[91]  N. Bowden,et al.  Synthesis of Comb Block Copolymers by ROMP, ATRP, and ROP and Their Assembly in the Solid State , 2006 .

[92]  Andreas Walther,et al.  Janus particles: synthesis, self-assembly, physical properties, and applications. , 2013, Chemical reviews.