Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients

[1]  M. Rieder,et al.  New genetic variant that might improve warfarin dose prediction in African Americans. , 2010, British journal of clinical pharmacology.

[2]  Munir Pirmohamed,et al.  Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. , 2010, Blood.

[3]  T. Langaee,et al.  Genetic and Clinical Predictors of Warfarin Dose Requirements in African Americans , 2010, Clinical pharmacology and therapeutics.

[4]  F. Yu,et al.  Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement--a systematic review and meta analysis. , 2010, Thrombosis research.

[5]  Rajeev Chaudhry,et al.  Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. , 2009, Mayo Clinic proceedings.

[6]  Kazuyuki Inoue,et al.  Effect of VKORC1-1639 G>A polymorphism, body weight, age, and serum albumin alterations on warfarin response in Japanese patients. , 2009, Thrombosis research.

[7]  Scott M. Williams,et al.  The Genetic Structure and History of Africans and African Americans , 2009, Science.

[8]  J. Lindh,et al.  Influence of CYP2C9 genotype on warfarin dose requirements—a systematic review and meta-analysis , 2009, European Journal of Clinical Pharmacology.

[9]  J. Goldstein,et al.  A potentially deleterious new CYP2C9 polymorphism identified in an African American patient with major hemorrhage on warfarin therapy. , 2009, Blood cells, molecules & diseases.

[10]  Nicole Soranzo,et al.  A Genome-Wide Association Study Confirms VKORC1, CYP2C9, and CYP4F2 as Principal Genetic Determinants of Warfarin Dose , 2009, PLoS genetics.

[11]  R. Altman,et al.  Estimation of the warfarin dose with clinical and pharmacogenetic data. , 2009, The New England journal of medicine.

[12]  A. Sajantila,et al.  Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales , 2009, Pharmacogenetics and genomics.

[13]  C. van Broeckhoven,et al.  Novel variants of major drug-metabolising enzyme genes in diverse African populations and their predicted functional effects , 2009, Human Genomics.

[14]  P. Underhill,et al.  Y-chromosome variation among Sudanese: restricted gene flow, concordance with language, geography, and history. , 2008, American journal of physical anthropology.

[15]  Nianjun Liu,et al.  VKORC1 polymorphisms, haplotypes and haplotype groups on warfarin dose among African-Americans and European-Americans. , 2008, Pharmacogenomics.

[16]  C. Thorn,et al.  Dosing Algorithms to Predict Warfarin Maintenance Dose in Caucasians and African Americans , 2008, Clinical pharmacology and therapeutics.

[17]  M. Rieder,et al.  Use of Pharmacogenetic and Clinical Factors to Predict the Therapeutic Dose of Warfarin , 2008, Clinical pharmacology and therapeutics.

[18]  B. Horne,et al.  Randomized Trial of Genotype-Guided Versus Standard Warfarin Dosing in Patients Initiating Oral Anticoagulation , 2007, Circulation.

[19]  Deepak Voora,et al.  Genetic-based dosing in orthopedic patients beginning warfarin therapy. , 2007, Blood.

[20]  Yusheng Zhu,et al.  Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. , 2007, Clinical chemistry.

[21]  C. Thorn,et al.  Warfarin Response and Vitamin K Epoxide Reductase Complex 1 in African Americans and Caucasians , 2007, Clinical pharmacology and therapeutics.

[22]  J. Goldstein,et al.  Influence of CYP2C9 Genotype on warfarin dose among African American and European Americans. , 2007, Personalized medicine.

[23]  E N Jonsson,et al.  A PK–PD Model for Predicting the Impact of Age, CYP2C9, and VKORC1 Genotype on Individualization of Warfarin Therapy , 2007, Clinical pharmacology and therapeutics.

[24]  M. Pirmohamed,et al.  Pharmacogenetics of warfarin: current status and future challenges , 2007, The Pharmacogenomics Journal.

[25]  Ling-Zhi Wang,et al.  A warfarin‐dosing model in Asians that uses single‐nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9 , 2006, Clinical pharmacology and therapeutics.

[26]  Koujirou Yamamoto,et al.  VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients , 2006, Clinical pharmacology and therapeutics.

[27]  V. Quesada,et al.  Identification and characterization of human polyserase-3, a novel protein with tandem serine-protease domains in the same polypeptide chain , 2006, BMC Biochemistry.

[28]  B. Goh,et al.  Interethnic variability of warfarin maintenance requirement is explained by VKORC1 genotype in an Asian population , 2006, Clinical pharmacology and therapeutics.

[29]  J. Gala,et al.  CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population , 2005, Pharmacogenetics and genomics.

[30]  Deborah A Nickerson,et al.  Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. , 2005, The New England journal of medicine.

[31]  Mark Crowther,et al.  Systematic overview of warfarin and its drug and food interactions. , 2005, Archives of internal medicine.

[32]  Jon Emery,et al.  CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: A HuGEnet™ systematic review and meta-analysis , 2005, Genetics in Medicine.

[33]  M. Margaglione,et al.  A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. , 2005, Blood.

[34]  H. Mohrenweiser,et al.  Discovery of new potentially defective alleles of human CYP2C9. , 2004, Pharmacogenetics.

[35]  Sarah A Tishkoff,et al.  Patterns of human genetic diversity: implications for human evolutionary history and disease. , 2003, Annual review of genomics and human genetics.

[36]  A. Torroni,et al.  ARTICLE IN PRESS Molecular Phylogenetics and Evolution xxx (2003) xxx–xxx MOLECULAR PHYLOGENETICS AND EVOLUTION , 2002 .

[37]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[38]  J. Goldstein,et al.  Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. , 2001, Pharmacogenetics.

[39]  M. Ingelman-Sundberg,et al.  Genetic polymorphism of cytochrome P450 2C9 in a Caucasian and a black African population. , 2001, British journal of clinical pharmacology.

[40]  R. Kim,et al.  Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. , 2001, Molecular pharmacology.

[41]  M. Linder Genetic mechanisms for hypersensitivity and resistance to the anticoagulant Warfarin. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[42]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[43]  B. Malone,et al.  Warfarin pharmacogenomics. , 2009, P & T : a peer-reviewed journal for formulary management.

[44]  D. Herrington,et al.  Maintenance warfarin dose varies according to two haplotypes of the vitamin K epoxide reductase gene. , 2006, Future cardiology.

[45]  U. Yasar,et al.  Functional impact of CYP2C95, CYP2C96, CYP2C98, and CYP2C911 in vivo among black Africans. , 2004, Clinical pharmacology and therapeutics.

[46]  H. Echizen,et al.  Pharmacogenetics of Warfarin Elimination and its Clinical Implications , 2001, Clinical pharmacokinetics.

[47]  J. Hirsh,et al.  Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. , 2001, Chest.

[48]  L. Kaminsky,et al.  Human P450 metabolism of warfarin. , 1997, Pharmacology & therapeutics.

[49]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .