Asymptotic state discrimination and a strict hierarchy in distinguishability norms
暂无分享,去创建一个
[1] Laura Mančinska,et al. A Framework for Bounding Nonlocality of State Discrimination , 2012, Communications in Mathematical Physics.
[2] Yuan Feng,et al. Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.
[3] Hermann Kampermann,et al. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .
[4] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[5] C. H. Bennett,et al. Quantum nonlocality without entanglement , 1998, quant-ph/9804053.
[6] Andrew M. Childs,et al. Interpolatability distinguishes LOCC from separable von Neumann measurements , 2013, 1306.5992.
[7] Laura Mančinska,et al. Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.
[8] Scott M. Cohen. Local distinguishability with preservation of entanglement , 2007 .
[9] B. M. Fulk. MATH , 1992 .
[10] F. Brandão,et al. Faithful Squashed Entanglement , 2010, 1010.1750.
[11] Michael M. Wolf,et al. Hilbert's projective metric in quantum information theory , 2011, 1102.5170.
[12] S. Barnett,et al. Accessible information and optimal strategies for real symmetrical quantum sources , 1998, quant-ph/9812062.
[13] Runyao Duan,et al. When Do Local Operations and Classical Communication Suffice for Two-Qubit State Discrimination? , 2013, IEEE Transactions on Information Theory.
[14] William Matthews,et al. On the Chernoff Distance for Asymptotic LOCC Discrimination of Bipartite Quantum States , 2007, 2008 IEEE Information Theory Workshop.
[15] A. Winter,et al. Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.
[16] C. Helstrom. Quantum detection and estimation theory , 1969 .
[17] I. Chuang,et al. Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .
[18] G. Illies,et al. Communications in Mathematical Physics , 2004 .
[19] P. Shor,et al. Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.
[20] Masahito Hayashi,et al. Two-way classical communication remarkably improves local distinguishability , 2007, 0708.3154.
[21] M. Koashi. On the irreversibility of measurements of correlations , 2009 .
[22] A. Holevo. Statistical decision theory for quantum systems , 1973 .
[23] Debbie W. Leung,et al. Quantum data hiding , 2002, IEEE Trans. Inf. Theory.
[24] Pramodita Sharma. 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.
[25] D. Leung,et al. Hiding bits in bell states. , 2000, Physical Review Letters.
[26] D. Markham,et al. Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.
[27] Vedral,et al. Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.
[28] Cécilia Lancien,et al. Distinguishing Multi-Partite States by Local Measurements , 2012, 1206.2884.
[29] Runyao Duan,et al. Local distinguishability of orthogonal 2 ⊗ 3 pure states , 2008 .
[30] H. Lo,et al. Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.
[31] Hoi-Kwong Lo,et al. Increasing entanglement monotones by separable operations. , 2012, Physical review letters.
[32] Ognyan Oreshkov,et al. Weak measurements are universal. , 2005, Physical review letters.
[33] Min-Hsiu Hsieh,et al. Revisiting the optimal detection of quantum information , 2013, 1304.1555.
[34] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.