Asymptotic state discrimination and a strict hierarchy in distinguishability norms

In this paper, we consider the problem of discriminating quantum states by local operations and classical communication (LOCC) when an arbitrarily small amount of error is permitted. This paradigm is known as asymptotic state discrimination, and we derive necessary conditions for when two multipartite states of any size can be discriminated perfectly by asymptotic LOCC. We use this new criterion to prove a gap in the LOCC and separable distinguishability norms. We then turn to the operational advantage of using two-way classical communication over one-way communication in LOCC processing. With a simple two-qubit product state ensemble, we demonstrate a strict majorization of the two-way LOCC norm over the one-way norm.

[1]  Laura Mančinska,et al.  A Framework for Bounding Nonlocality of State Discrimination , 2012, Communications in Mathematical Physics.

[2]  Yuan Feng,et al.  Distinguishability of Quantum States by Separable Operations , 2007, IEEE Transactions on Information Theory.

[3]  Hermann Kampermann,et al.  Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm , 2011 .

[4]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[5]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[6]  Andrew M. Childs,et al.  Interpolatability distinguishes LOCC from separable von Neumann measurements , 2013, 1306.5992.

[7]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[8]  Scott M. Cohen Local distinguishability with preservation of entanglement , 2007 .

[9]  B. M. Fulk MATH , 1992 .

[10]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[11]  Michael M. Wolf,et al.  Hilbert's projective metric in quantum information theory , 2011, 1102.5170.

[12]  S. Barnett,et al.  Accessible information and optimal strategies for real symmetrical quantum sources , 1998, quant-ph/9812062.

[13]  Runyao Duan,et al.  When Do Local Operations and Classical Communication Suffice for Two-Qubit State Discrimination? , 2013, IEEE Transactions on Information Theory.

[14]  William Matthews,et al.  On the Chernoff Distance for Asymptotic LOCC Discrimination of Bipartite Quantum States , 2007, 2008 IEEE Information Theory Workshop.

[15]  A. Winter,et al.  Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding , 2008, 0810.2327.

[16]  C. Helstrom Quantum detection and estimation theory , 1969 .

[17]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[18]  G. Illies,et al.  Communications in Mathematical Physics , 2004 .

[19]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[20]  Masahito Hayashi,et al.  Two-way classical communication remarkably improves local distinguishability , 2007, 0708.3154.

[21]  M. Koashi On the irreversibility of measurements of correlations , 2009 .

[22]  A. Holevo Statistical decision theory for quantum systems , 1973 .

[23]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[24]  Pramodita Sharma 2012 , 2013, Les 25 ans de l’OMC: Une rétrospective en photos.

[25]  D. Leung,et al.  Hiding bits in bell states. , 2000, Physical Review Letters.

[26]  D. Markham,et al.  Optimal local discrimination of two multipartite pure states , 2001, quant-ph/0102073.

[27]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[28]  Cécilia Lancien,et al.  Distinguishing Multi-Partite States by Local Measurements , 2012, 1206.2884.

[29]  Runyao Duan,et al.  Local distinguishability of orthogonal 2 ⊗ 3 pure states , 2008 .

[30]  H. Lo,et al.  Concentrating entanglement by local actions: Beyond mean values , 1997, quant-ph/9707038.

[31]  Hoi-Kwong Lo,et al.  Increasing entanglement monotones by separable operations. , 2012, Physical review letters.

[32]  Ognyan Oreshkov,et al.  Weak measurements are universal. , 2005, Physical review letters.

[33]  Min-Hsiu Hsieh,et al.  Revisiting the optimal detection of quantum information , 2013, 1304.1555.

[34]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.