Cellulose dissolution in aqueous NaOH–ZnO: cellulose reactivity and the role of ZnO

[1]  Chang-Ha Lee,et al.  Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model , 2020, Cellulose.

[2]  U. Agarwal Analysis of Cellulose and Lignocellulose Materials by Raman Spectroscopy: A Review of the Current Status , 2019, Molecules.

[3]  U. Olsson,et al.  Cellulose gelation in NaOH solutions is due to cellulose crystallization , 2018, Cellulose.

[4]  T. Vuorinen,et al.  Assessing the reactivity of cellulose by oxidation with 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxo-piperidinium cation under mild conditions. , 2017, Carbohydrate polymers.

[5]  U. Olsson,et al.  On the dissolution state of cellulose in cold alkali solutions , 2017, Cellulose.

[6]  P. Alexandridis,et al.  Assessment of solvents for cellulose dissolution. , 2017, Bioresource technology.

[7]  T. Pääkkönen,et al.  TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield , 2017, Cellulose.

[8]  P. Alexandridis,et al.  Cellulose dissolution: insights on the contributions of solvent-induced decrystallization and chain disentanglement , 2017, Cellulose.

[9]  I. Furó,et al.  Ionization of Cellobiose in Aqueous Alkali and the Mechanism of Cellulose Dissolution. , 2016, The journal of physical chemistry letters.

[10]  T. Vuorinen,et al.  Porosity of wood pulp fibers in the wet and highly open dry state , 2016 .

[11]  Lina Zhang,et al.  Recent advances in regenerated cellulose materials , 2016 .

[12]  D. Topgaard,et al.  Dissolution state of cellulose in aqueous systems. 1. Alkaline solvents , 2016, Cellulose.

[13]  T. Budtova,et al.  Cellulose in NaOH–water based solvents: a review , 2016, Cellulose.

[14]  T. Pääkkönen,et al.  Rate-limiting steps in bromide-free TEMPO-mediated oxidation of cellulose—Quantification of the N-Oxoammonium cation by iodometric titration and UV–vis spectroscopy , 2015 .

[15]  B. Lindman,et al.  Brief overview on cellulose dissolution/regeneration interactions and mechanisms. , 2015, Advances in colloid and interface science.

[16]  U. Agarwal 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials , 2014, Front. Plant Sci..

[17]  B. Lindman,et al.  Competing forces during cellulose dissolution: From solvents to mechanisms , 2014 .

[18]  W. Gates,et al.  Formation of glycerol carbonate from glycerol and urea catalysed by metal monoglycerolates , 2013 .

[19]  H. Sixta,et al.  Potential of hot water extraction of birch wood to produce high-purity dissolving pulp after alkaline pulping. , 2013, Bioresource technology.

[20]  P. Fardim,et al.  Functional cellulose beads: preparation, characterization, and applications. , 2013, Chemical reviews.

[21]  Animesh Agarwal,et al.  Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations. , 2013, The journal of physical chemistry. B.

[22]  A. Romano,et al.  Cellulose dissolution in an alkali based solvent: influence of additives and pretreatments , 2013 .

[23]  Lina Zhang,et al.  Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. , 2011, The journal of physical chemistry. B.

[24]  Lina Zhang,et al.  Transparent cellulose films with high gas barrier properties fabricated from aqueous alkali/urea solutions. , 2011, Biomacromolecules.

[25]  Weiqing Liu,et al.  Influence of ZnO on the properties of dilute and semi-dilute cellulose-NaOH-water solutions , 2011 .

[26]  Lina Zhang,et al.  Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature , 2011 .

[27]  Akira Isogai,et al.  TEMPO-oxidized cellulose nanofibers. , 2011, Nanoscale.

[28]  Scott Renneckar,et al.  Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. , 2011, Biomacromolecules.

[29]  G. Karlström,et al.  On the mechanism of dissolution of cellulose , 2010 .

[30]  R. Reiner,et al.  Cellulose I crystallinity determination using FT–Raman spectroscopy: univariate and multivariate methods , 2010 .

[31]  A. Isogai,et al.  Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. , 2010, Biomacromolecules.

[32]  I. Kiricsi,et al.  Synthesis of Zinc Glycerolate Microstacks from a ZnO Nanorod Sacrificial Template , 2009 .

[33]  Akira Isogai,et al.  Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. , 2009, Biomacromolecules.

[34]  W. Mormann,et al.  Trimethylsilylation of cellulose in ionic liquids. , 2009, Macromolecular bioscience.

[35]  M. Österberg,et al.  Effect of alkaline treatment on cellulose supramolecular structure studied with combined confocal Raman spectroscopy and atomic force microscopy , 2009 .

[36]  Lina Zhang,et al.  Dynamic Self-Assembly Induced Rapid Dissolution of Cellulose at Low Temperatures , 2008 .

[37]  Akira Isogai,et al.  Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. , 2007, Biomacromolecules.

[38]  T. Budtova,et al.  Structure of aqueous solutions of microcrystalline cellulose/sodium hydroxide below 0 degrees C and the limit of cellulose dissolution. , 2007, Biomacromolecules.

[39]  K. Fischer,et al.  Applications of FT Raman Spectroscopy and Micro Spectroscopy Characterizing Cellulose and Cellulosic Biomaterials , 2005 .

[40]  T. Budtova,et al.  Rheological properties and gelation of aqueous cellulose-NaOH solutions. , 2003, Biomacromolecules.

[41]  S. Fischer,et al.  NIR FT Raman Spectroscopy–a Rapid Analytical Tool for Detecting the Transformation of Cellulose Polymorphs , 2001 .

[42]  T. Heinze,et al.  Effective preparation of cellulose derivatives in a new simple cellulose solvent , 2000 .

[43]  Akira Isogai,et al.  Dissolution of Cellulose in Aqueous NaOH Solutions , 1998 .

[44]  S. Ralph,et al.  FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea Mariana) , 1997 .

[45]  R. Atalla,et al.  Band assignments in the Raman spectra of celluloses , 1987 .

[46]  J. Koenig,et al.  Infrared and Raman Spectra of the Cellulose from the Cell Wall of Valonia ventricosa , 1970 .

[47]  K. G. Stone Determination of Iodide , 1954 .

[48]  G. F. D. B.Sc. 10—THE DISSOLUTION OF CHEMICALLY MODIFIED COTTON CELLULOSE IN ALKALINE SOLUTIONS. PART II.—A COMPARISON OF THE SOLVENT ACTION OF SOLUTIONS OF LITHIUM, SODIUM, POTASSIUM, AND TETRAMETHYLAMMONIUM HYDROXIDES , 1936 .

[49]  G. F. D. B.Sc. 12—THE DISSOLUTION OF CHEMICALLY MODIFIED COTTON CELLULOSE IN ALKALINE SOLUTIONS. PART I—IN SOLUTIONS OF SODIUM HYDROXIDE, PARTICULARLY AT TEMPERATURES BELOW THE NORMAL , 1934 .

[50]  A. Bodek,et al.  Manufacture of Cellulose Fibres from Alkaline Solutions of Hydrothermally Treated Cellulose Pulp , 2009 .

[51]  Amie D. Sluiter,et al.  Determination of Structural Carbohydrates and Lignin in Biomass , 2004 .

[52]  U. von Gunten,et al.  Determination of Iodide and Iodate by Ion Chromatography with Postcolumn Reaction and UV/Visible Detection. , 1999, Analytical chemistry.

[53]  Urs von Gunten,et al.  Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/visible detection , 1999 .

[54]  H. V. Bekkum,et al.  Highly selective tempo mediated oxidation of primary alcohol groups in polysaccharides , 1994 .

[55]  B. S. Neporent,et al.  On The Mechanism of , 1975 .

[56]  J. Janson Calculation of the polysaccharide composition of wood and pulp. , 1970 .