Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications

For pt.I see ibid., vol.80, no.4, p.520-38 (1992). The concept of instantaneous frequency (IF) is extended to discrete-time signals. The specific problem explored is that of estimating the IF of frequency-modulated (FM) discrete-time signals embedded in Gaussian noise. Well-established methods for estimating the IF include differentiation of the phase and smoothing thereof, adaptive frequency estimation techniques such as the phase locked loop (PLL), and extraction of the peak from time-varying spectral representations. More recently, methods based on a modeling of the signal phase as a polynomial have been introduced. These methods are reviewed, and their performance compared on both simulated and real data. Guidelines are given as to which estimation method should be used for a given signal class and signal-to-noise ratio (SNR). >

[1]  T. Kailath,et al.  Fast, recursive-least-squares transversal filters for adaptive filtering , 1984 .

[2]  D. Slepian,et al.  On bandwidth , 1976, Proceedings of the IEEE.

[3]  Steven A. Tretter,et al.  Estimating the frequency of a noisy sinusoid by linear regression , 1985, IEEE Trans. Inf. Theory.

[4]  Boualem Boashash,et al.  Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency , 1993, IEEE Trans. Signal Process..

[5]  A. Nuttall,et al.  On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .

[6]  B. Boashash,et al.  Application of the Wigner–Ville Distribution to Temperature Gradient Microstructure: A New Technique to Study Small-Scale Variations , 1986 .

[7]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[8]  Steven Kay Statistically/computationally efficient frequency estimation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[9]  A. M. Walker On the estimation of a harmonic component in a time series with stationary independent residuals , 1971 .

[10]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[11]  A. W. Rihaczek,et al.  Hilbert transforms and the complex representation of real signals , 1966 .

[12]  Petar M. Djuric,et al.  Parameter estimation of chirp signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[13]  D. H. Friedman Detection and frequency estimation of narrow-band signals by means of the instantaneous-frequency distribution (IFD) , 1988, Fourth Annual ASSP Workshop on Spectrum Estimation and Modeling.

[14]  Leon Cohen,et al.  Instantaneous bandwidth for signals and spectrogram , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[15]  Fj Harris Exact FM detection of complex time series , 1987 .

[16]  S. Kadambe,et al.  Tracking of unknown non-stationary chirp signals using unsupervised clustering in the Wigner distribution space , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[17]  M. Ackroyd Instantaneous and time-varying spectraߞan introduction , 1970 .

[18]  B. Boashash,et al.  Statistical/computational comparison of some estimators for instantaneous frequency , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[19]  Simon Haykin,et al.  An Introduction to Analog and Digital Communications , 1989 .

[20]  Boualem Boashash,et al.  High resolution processing techniques for temporal and spatial signals , 1991 .

[21]  Boualem Boashash,et al.  On estimating the instantaneous frequency of a Gaussian random signal by use of the Wigner-Ville distribution , 1988, IEEE Trans. Acoust. Speech Signal Process..

[22]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[23]  Boaz Porat,et al.  The Cramer-Rao lower bound for signals with constant amplitude and polynomial phase , 1991, IEEE Trans. Signal Process..

[24]  J. R. Carson,et al.  Variable frequency electric circuit theory with application to the theory of frequency-modulation , 1937 .

[25]  Madhu Gupta Definition of instantaneous frequency and frequency measurability , 1975 .

[26]  José Tribolet,et al.  A new phase unwrapping algorithm , 1977 .

[27]  Lb White,et al.  Estimation of the Instantaneous Frequency of a Noisy Signal , 1992 .

[28]  K. Mardia Statistics of Directional Data , 1972 .

[29]  Boualem Boashash,et al.  Wigner-Ville analysis of time-varying signals , 1982, ICASSP.

[30]  L. Griffiths Rapid measurement of digital instantaneous frequency , 1975 .

[31]  Kon Max Wong,et al.  Estimation of the time-varying frequency of a signal: the Cramer-Rao bound and the application of Wigner distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  M. Berry Semi-classical mechanics in phase space: A study of Wigner’s function , 1977, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[33]  Alain Hellion,et al.  Une condition nécessaire et suffisante pour l’écriture du modèle exponentiel des signaux d’énergie finie , 1978 .

[34]  Boualem Boashash,et al.  Instantaneous Frequency Of Signals: Concepts, Estimation Techniques And Applications , 1989, Optics & Photonics.

[35]  Fred Harris,et al.  Performance Comparison Of Wigner-Ville Based Techniques To Standard Fm-Discriminators For Estimating Instantaneous Frequency Of A Rapidly Slewing Fm Sinusoid In The Presence Of Noise , 1988, Optics & Photonics.

[36]  Harry L. Van Trees,et al.  Detection, Estimation, and Modulation Theory, Part I , 1968 .

[37]  William J. Williams,et al.  Reduced Interference Time-Frequency Distributions , 1992 .

[38]  Leon Cohen,et al.  Instantaneous Frequency, Its Standard Deviation And Multicomponent Signals , 1988, Optics & Photonics.

[39]  D. E. Vakman,et al.  METHODOLOGICAL NOTES: Amplitude, phase, frequency---fundamental concepts of oscillation theory , 1977 .

[40]  Boualem Boashash,et al.  Radar Imaging Using The Wigner-Ville Distribution , 1989, Optics & Photonics.

[41]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[42]  Ken Sharman,et al.  Time-varying autoregressive modeling of a class of nonstationary signals , 1984, ICASSP.

[43]  Robert J. Marks,et al.  The use of cone-shaped kernels for generalized time-frequency representations of nonstationary signals , 1990, IEEE Trans. Acoust. Speech Signal Process..

[44]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[45]  Roy L. Streit,et al.  Frequency line tracking using hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[46]  Mingui Sun,et al.  Time-Frequency Domain Problems in the Neurosciences , 1992 .

[47]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[48]  Peter J. O'Shea,et al.  Detection and estimation methods for non-stationary signals , 1991 .

[49]  David A. Holdsworth,et al.  Frequency tracking using hidden Markov models with amplitude and phase information , 1993, IEEE Trans. Signal Process..

[50]  B. Ferguson A ground-based narrow-band passive acoustic technique for estimating the altitude and speed of a propeller-driven aircraft , 1992 .

[51]  Langford B. White,et al.  Cartesian hidden Markov models with applications , 1992, IEEE Trans. Signal Process..

[52]  Richard J. Mammone,et al.  An adaptive technique for high resolution time-varying spectral estimation , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[53]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[54]  F. Taylor,et al.  Estimation of instantaneous frequency using the discrete Wigner distribution , 1990 .

[55]  Boualem Boashash,et al.  Instantaneous frequency estimation and automatic time-varying filtering , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[56]  Graeme Jones,et al.  Instantaneous frequency, time-frequency distributions and the analysis of multicomponent signals , 1992 .

[57]  Boualem Boashash,et al.  Algorithms for instantaneous frequency estimation: a comparative study , 1990 .

[58]  K. S. Arun,et al.  Tracking the frequencies of superimposed time-varying harmonics , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[59]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[60]  S. Rice Envelopes of narrow-band signals , 1982, Proceedings of the IEEE.

[61]  M.G. Bellanger,et al.  Digital processing of speech signals , 1980, Proceedings of the IEEE.

[62]  Balth. van der Pol,et al.  The Fundamental Principles of Frequency Modulation , 1946 .

[63]  Boualem Boashash,et al.  Note on the use of the Wigner distribution for time-frequency signal analysis , 1988, IEEE Trans. Acoust. Speech Signal Process..

[64]  Boualem Boashash,et al.  Time-varying higher order spectra , 1991, Optics & Photonics.