Counterexamples to a Conjecture of Dombi in Additive Number Theory

We disprove a 2002 conjecture of Dombi from additive number theory. More precisely, we find examples of sets $A \subset \mathbb{N}$ with the property that $\mathbb{N} \setminus A$ is infinite, but the sequence $n \rightarrow |\{ (a,b,c) \, : \, n=a+b+c \text{ and } a,b,c \in A \}|$, counting the number of $3$-compositions using elements of $A$ only, is strictly increasing.

[1]  J. Shallit The Logical Approach to Automatic Sequences , 2022 .

[2]  J. Shallit,et al.  Decidability and k-Regular Sequences , 2020, Theor. Comput. Sci..

[3]  J. Shallit,et al.  Additive properties of the evil and odious numbers and similar sequences , 2021, Functiones et Approximatio Commentarii Mathematici.

[4]  Juha Honkala,et al.  Quasi-universal k-regular sequences , 2021, Theor. Comput. Sci..

[5]  S. Finch The On-Line Encyclopedia of Integer Sequences , 2021, The Mathematical Intelligencer.

[6]  Jeffrey Shallit,et al.  Additive Number Theory via Automata Theory , 2019, Theory of Computing Systems.

[7]  Jeffrey Shallit,et al.  Additive Number Theory via Approximation by Regular Languages , 2018, DLT.

[8]  Jeffrey Shallit,et al.  When is an automatic set an additive basis? , 2017, Proceedings of the American Mathematical Society, Series B.

[9]  Hamoon Mousavi,et al.  Automatic Theorem Proving in Walnut , 2016, ArXiv.

[10]  A. Sárközy On the Number of Additive Representations of Integers , 2006 .

[11]  Alfred J. van der Poorten,et al.  Automatic sequences. Theory, applications, generalizations , 2005, Math. Comput..

[12]  Y feno,et al.  Problems and Results in Additive Number Theory , 2004 .

[13]  Jeffrey Shallit,et al.  The ring of k-regular sequences, II , 2003, Theor. Comput. Sci..

[14]  Gergely Dombi,et al.  Additive properties of certain sets , 2002 .

[15]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[16]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[17]  R. Balasubramanian,et al.  A note on a result of Erdös, Sárkőzy and Sós , 1987 .

[18]  András Sárközy,et al.  Problems and results on additive properties of general sequences. II , 1986 .

[19]  P. ERDs Problems and Results on Additive Properties of General Sequences , 1986 .

[20]  András Sárközy,et al.  Problems and results on additive properties of general sequences. I. , 1985 .

[21]  P. Erdös,et al.  On a problem of sidon in additive number theory, and on some related problems , 1941 .