A monolithically integrated high‐efficiency Cu(In,Ga)Se2 mini‐module structured solely by laser

Monolithically integrated Cu(In,Ga)Se2 mini-modules were fabricated in order to reduce the width of patterning related dead area. The Cu(In,Ga)Se2 layers were prepared on soda-lime glasses using the multistage process at low substrate temperature below 500 °C. A picosecond laser with a wavelength of 532 nm was used for all of the structuring processes (P1, P2, and P3) for the monolithic integration. A “lift-off” type structuring was applied for P1 and P3, and an “ablation” type was for P2. The laser structuring was optimized to be minimizing the dead area width, and the width of about 70 µm was successfully achieved. A mini-module, in which the optimized structuring processes were applied for the integration, demonstrated a certified efficiency of 16.6%. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Shiro Nishiwaki,et al.  Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. , 2011, Nature materials.

[2]  Marko Topič,et al.  A detailed study of monolithic contacts and electrical losses in a large‐area thin‐film module , 2005 .

[3]  Lars Stolt,et al.  World‐record Cu(In,Ga)Se2‐based thin‐film sub‐module with 17.4% efficiency , 2012 .

[4]  Paulius Gečys Scribing of Thin-Film Solar Cells with Picosecond and Femtosecond Lasers , 2012 .

[5]  U. Zimmermann,et al.  Microanalysis of laser micro-welded interconnections in CIGS PV modules , 2012 .

[6]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[7]  Valerio Romano,et al.  All Fiber Laser Scribing of Cu(In,Ga)Se2 Thin-Film Solar Modules , 2013 .

[8]  Andreas Bauer,et al.  Novel series connection concept for thin film solar modules , 2013 .

[9]  M. Gedvilas,et al.  Selectiveness of laser processing due to energy coupling localization: case of thin film solar cell scribing , 2013 .

[10]  Heinz P. Huber,et al.  Monolithic interconnection of CIGSSe solar cells by picosecond laser structuring , 2010, LASE.

[11]  Santiago Silvestre,et al.  Modelling Photovoltaic Systems Using PSpice®: Castaner/Modelling Photovoltaic Systems Using PSpice , 2006 .

[12]  S. Nikumb,et al.  CIGS P1, P2, P3 Scribing Processes using a Pulse Programmable Industrial Fiber Laser: Preprint , 2010 .

[13]  D. Hariskos,et al.  Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .

[14]  Marika Edoff,et al.  Next generation interconnective laser patterning of CIGS thin film modules , 2011 .

[15]  R. Hock,et al.  Scanning electron microscopical examination of the impact of laser patterning on microscopic inhomogeneities of Cu(In,Ga)(Se,S)2 absorbers produced by rapid thermal processing , 2013 .

[16]  Valerio Romano,et al.  Optimized laser patterning for high performance Cu(In,Ga)Se2 thin-film solar modules , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[17]  H. Huber,et al.  Ultrafast Lasers Improve the Efficiency of CIS Thin Film Solar Cells , 2012 .

[18]  Klaus Zimmer,et al.  Etching of CuInSe2 thin films-comparison of femtosecond and picosecond laser ablation , 2005 .

[19]  M. Gedvilas,et al.  ps-laser scribing of CIGS films at different wavelengths , 2010 .

[20]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[21]  M. Sentis,et al.  Selective ablation of thin films with short and ultrashort laser pulses , 2006 .

[22]  Wei Liu,et al.  Investigation of microstructuring CuInGaSe2 thin films with ultrashort laser pulses , 2009 .

[23]  C. Hellwig,et al.  Laser ablation of thin molybdenum films on transparent substrates at low fluences , 2011 .

[24]  Jean-François Guillemoles,et al.  Stability Issues of Cu(In,Ga)Se2-Based Solar Cells , 2000 .

[25]  Katsumi Kushiya,et al.  CIS-based thin-film PV technology in solar frontier K.K. , 2014 .

[26]  Shigeru Niki,et al.  Highly Efficient Cu(In,Ga)Se2 Thin-Film Submodule Fabricated Using a Three-Stage Process , 2013 .

[27]  Heinz P. Huber,et al.  Optimization of picosecond laser structuring for the monolithic serial interconnection of CIS solar cells , 2013 .

[28]  M. Gedvilas,et al.  Ultrashort pulsed laser induced material lift-off processing of CZTSe thin-film solar cells , 2014 .

[29]  H. Schock,et al.  Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2 , 1999 .

[30]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[31]  W. Warta,et al.  Solar cell efficiency tables (version 43) , 2014 .

[32]  Jean-François Guillemoles,et al.  CU(IN, GA)SE2 SOLAR CELLS : DEVICE STABILITY BASED ON CHEMICAL FLEXIBILITY , 1999 .

[33]  T. Aramoto,et al.  Interface control to enhance the fill factor over 0.70 in a large-area CIS-based thin-film PV technology , 2009 .