A Retrial BMAP/PH/N queueing system with Markov modulated retrials

A retrial multi-server queueing model with a Batch Markovian Arrival Process (BMAP) and phase-type (PH-type) service time distribution is analyzed. The rate of individual repeated attempts from the orbit is modulated according to a Markov Modulated Poisson Process (MMPP). The operation of the system is described in terms of continuous time multi-dimensional Markov chain. Stability condition and the algorithm for calculating the stationary state distribution of the chain are obtained. Main performance measures of the system are calculated.

[1]  Antonio Gómez-Corral,et al.  A bibliographical guide to the analysis of retrial queues through matrix analytic techniques , 2006, Ann. Oper. Res..

[2]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[3]  S. A. Dudin,et al.  The MAP/M/N retrial queueing system with time-phased batch arrivals , 2009, Probl. Inf. Transm..

[4]  Alexander N. Dudin,et al.  Multi-dimensional asymptotically quasi-Toeplitz Markov chains and their application in queueing theory , 2006, Queueing Syst. Theory Appl..

[5]  Alexander N. Dudin,et al.  A BMAP/PH/n System with Impatient Repeated Calls , 2007, Asia Pac. J. Oper. Res..

[6]  V. Klimenok A Multiserver Retrial Queueing System with Batch Markov Arrival Process , 2001 .

[7]  Attahiru Sule Alfa,et al.  Matrix analytic methods for a multi-server retrial queue with buffer , 1999 .

[8]  Jesús R. Artalejo,et al.  Retrial Queueing Systems , 2008 .

[9]  Alexander N. Dudin,et al.  Mobile Networks Modeling the access to a wireless network at hot spots , 2005, Eur. Trans. Telecommun..

[10]  Srinivas R. Chakravarthy,et al.  A Multi-Server Retrial Queue with BMAP Arrivals and Group Services , 2002, Queueing Syst. Theory Appl..

[11]  A. N. Dudin,et al.  BMAP|SM⥻1 model with Markov modulated retrials , 1999 .

[12]  Che Soong Kim,et al.  The BMAP/PH/N retrial queue with Markovian flow of breakdowns , 2008, Eur. J. Oper. Res..

[13]  Vaidyanathan Ramaswami,et al.  Introduction to Matrix Analytic Methods in Stochastic Modeling , 1999, ASA-SIAM Series on Statistics and Applied Mathematics.

[14]  Christoph Lindemann,et al.  Modeling IP traffic using the batch Markovian arrival process , 2003, Perform. Evaluation.

[15]  Alexander N. Dudin,et al.  A Retrial BMAP/PH/N System , 2002, Queueing Syst. Theory Appl..

[16]  Alexander N. Dudin,et al.  A retrial BMAP/SM/1 system with linear repeated requests , 1999, Queueing Syst. Theory Appl..

[17]  Srinivas R. Chakravarthy The Batch Markovian Arrival Process: A Review and Future Work , 2001 .

[18]  David M. Lucantoni,et al.  New results for the single server queue with a batch Markovian arrival process , 1991 .

[19]  Attahiru Sule Alfa,et al.  Advances in matrix-analytic methods for stochastic models , 1998 .

[20]  Bong Dae Choi,et al.  MAP1, MAP2/M/c retrial queue with the retrial group of finite capacity and geometric loss , 1999 .

[21]  M. Neuts A Versatile Markovian Point Process , 1979 .

[22]  Jesús R. Artalejo,et al.  Retrial Queueing Systems: A Computational Approach , 2008 .

[23]  Jeffrey E. Diamond Matrix analytical methods for retrial queues , 1996 .

[24]  Hui Li,et al.  Ergodicity of the BMAP/PH/s/s+K retrial queue with PH-retrial times , 2000, Queueing Syst. Theory Appl..

[25]  J. Templeton Retrial queues , 1999 .

[26]  Valentina Klimenok,et al.  Queueing system BMAP/G/1 with repeated calls , 1999 .

[27]  Daniel P. Heyman,et al.  Modeling multiple IP traffic streams with rate limits , 2003, TNET.

[28]  B. Conolly Structured Stochastic Matrices of M/G/1 Type and Their Applications , 1991 .

[29]  Che Soong Kim,et al.  A multi-server queueing model with retrial connection arrivals as a model for optimisation of the traffic control , 2012, Int. J. Syst. Sci..

[30]  Che Soong Kim,et al.  The BMAP/PH/N retrial queueing system operating in Markovian random environment , 2010, Comput. Oper. Res..

[31]  Che Soong Kim,et al.  Performance Analysis of a Loss Retrial BMAP/PH/N System , 2004 .

[32]  Alexander N. Dudin,et al.  The BMAP/SM/1 retrial queue with controllable operation modes , 2001, Eur. J. Oper. Res..