Recent advancements in rational design of non-aqueous organic redox flow batteries

The state-of-the-art advances of non-aqueous organic redox flow batteries for grid-scale energy storage were evaluated and summarized.

[1]  Ruiyong Chen Redox flow batteries for energy storage: Recent advances in using organic active materials , 2020 .

[2]  J. Fransaer,et al.  Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries , 2020 .

[3]  David G. Kwabi,et al.  Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review. , 2020, Chemical reviews.

[4]  Matthew S Sigman,et al.  Integrating Electrochemical and Statistical Analysis Tools for Molecular Design and Mechanistic Understanding. , 2020, Accounts of chemical research.

[5]  Yu Zhu,et al.  Polymeric Active Materials for Redox Flow Battery Application , 2020 .

[6]  Hubert H. Girault,et al.  Aqueous organic and redox-mediated redox flow batteries: a review , 2020 .

[7]  Yongdan Li,et al.  Enhancing the performance of an all-organic non-aqueous redox flow battery , 2019 .

[8]  Kathryn E. Toghill,et al.  Metal coordination complexes in nonaqueous redox flow batteries , 2019 .

[9]  G. Prakash,et al.  Next-generation aqueous flow battery chemistries , 2019 .

[10]  Ryan Clemmer,et al.  Vanadium redox flow batteries: A comprehensive review , 2019, Journal of Energy Storage.

[11]  K. Kang,et al.  Bio-inspired Molecular Redesign of a Multi-redox Catholyte for High-Energy Non-aqueous Organic Redox Flow Batteries , 2019, Chem.

[12]  Matthew S Sigman,et al.  Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. , 2019, Journal of the American Chemical Society.

[13]  Qing Wang,et al.  Redox targeting-based flow batteries , 2019, Journal of Physics D: Applied Physics.

[14]  T. L. Liu,et al.  Status and Prospects of Organic Redox Flow Batteries toward Sustainable Energy Storage , 2019, ACS Energy Letters.

[15]  Yu Ding,et al.  Pathways to Widespread Applications: Development of Redox Flow Batteries Based on New Chemistries , 2019, Chem.

[16]  A. Rowan,et al.  Molecular Design Strategies for Electrochemical Behavior of Aromatic Carbonyl Compounds in Organic and Aqueous Electrolytes , 2019, Advanced science.

[17]  J. Gilroy,et al.  A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery , 2019, Journal of Energy Chemistry.

[18]  Fikile R. Brushett,et al.  Tailoring Two-Electron-Donating Phenothiazines To Enable High-Concentration Redox Electrolytes for Use in Nonaqueous Redox Flow Batteries , 2019, Chemistry of Materials.

[19]  Yu Ding,et al.  Biredox Eutectic Electrolytes Derived from Organic Redox-Active Molecules: High-Energy Storage Systems. , 2019, Angewandte Chemie.

[20]  Yu Zhao,et al.  Enhanced cyclability of organic redox flow batteries enabled by an artificial bipolar molecule in neutral aqueous electrolyte , 2019, Journal of Power Sources.

[21]  Vikram Singh,et al.  Aqueous organic redox flow batteries , 2019, Nano Research.

[22]  J. Lemmon,et al.  All-Liquid Electroactive Materials for High Energy Density Organic Flow Battery , 2019, ACS Applied Energy Materials.

[23]  Yu Ding,et al.  Highly Concentrated Phthalimide-Based Anolytes for Organic Redox Flow Batteries with Enhanced Reversibility , 2018, Chem.

[24]  R. Marcilla,et al.  Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. , 2018, ACS applied materials & interfaces.

[25]  Yu Ding,et al.  Progress and prospects of next-generation redox flow batteries , 2018, Energy Storage Materials.

[26]  Yu Ding,et al.  Eutectic Electrolytes for High-Energy-Density Redox Flow Batteries , 2018, ACS Energy Letters.

[27]  K. Kang,et al.  Multi-redox Molecule for High-Energy Redox Flow Batteries , 2018, Joule.

[28]  Qing Wang,et al.  Redox‐Targeting‐Based Flow Batteries for Large‐Scale Energy Storage , 2018, Advanced materials.

[29]  Seung M. Oh,et al.  N-ferrocenylphthalimide; A single redox couple formed by attaching a ferrocene moiety to phthalimide for non-aqueous flow batteries , 2018, Journal of Power Sources.

[30]  Jeffrey S. Moore,et al.  Impact of Charge Transport Dynamics and Conditioning on Cycling Efficiency within Single Redox Active Colloids , 2018, ChemElectroChem.

[31]  Kathryn E. Toghill,et al.  Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review , 2018 .

[32]  Jeffrey S. Moore,et al.  Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density , 2018 .

[33]  Jeffrey S. Moore,et al.  Effect of the Backbone Tether on the Electrochemical Properties of Soluble Cyclopropenium Redox-Active Polymers , 2018 .

[34]  Jonathon K. Schuh,et al.  Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries , 2018 .

[35]  Z. Yang,et al.  A Two‐Electron Storage Nonaqueous Organic Redox Flow Battery , 2018 .

[36]  T. Turek,et al.  Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries – A review , 2018 .

[37]  U. Schubert,et al.  Synthesis and Characterization of a Phthalimide‐Containing Redox‐Active Polymer for High‐Voltage Polymer‐Based Redox‐Flow Batteries , 2018 .

[38]  B. Helms,et al.  High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries , 2018, ACS central science.

[39]  Yu Ding,et al.  Molecular engineering of organic electroactive materials for redox flow batteries. , 2018, Chemical Society reviews.

[40]  T. L. Liu,et al.  Designer Two-Electron Storage Viologen Anolyte Materials for Neutral Aqueous Organic Redox Flow Batteries , 2017 .

[41]  Jun Chen,et al.  Molecular Engineering with Organic Carbonyl Electrode Materials for Advanced Stationary and Redox Flow Rechargeable Batteries , 2017, Advanced materials.

[42]  Fikile R. Brushett,et al.  A stable two-electron-donating phenothiazine for application in nonaqueous redox flow batteries , 2017 .

[43]  C. Sevov,et al.  Multielectron Cycling of a Low-Potential Anolyte in Alkali Metal Electrolytes for Nonaqueous Redox Flow Batteries , 2017 .

[44]  T. Nokami,et al.  Liquid Quinones for Solvent‐Free Redox Flow Batteries , 2017, Advanced materials.

[45]  David M. Reed,et al.  Materials and Systems for Organic Redox Flow Batteries: Status and Challenges , 2017 .

[46]  M. R. Mohamed,et al.  Recent developments in organic redox flow batteries: A critical review , 2017 .

[47]  Corrine F. Elliott,et al.  Beyond the Hammett Effect: Using Strain to Alter the Landscape of Electrochemical Potentials. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[48]  J. F. Stoddart,et al.  Introducing Stable Radicals into Molecular Machines , 2017, ACS central science.

[49]  R. Marcilla,et al.  A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes , 2017, Angewandte Chemie.

[50]  Kathryn E. Toghill,et al.  Cobalt(II) complexes with azole-pyridine type ligands for non-aqueous redox-flow batteries: Tunable electrochemistry via structural modification , 2017 .

[51]  Jeffrey A. Kowalski,et al.  “Wine-Dark Sea” in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability , 2017 .

[52]  C. Sevov,et al.  Cyclopropenium Salts as Cyclable, High‐Potential Catholytes in Nonaqueous Media , 2017 .

[53]  David P. Hickey,et al.  Physical Organic Approach to Persistent, Cyclable, Low-Potential Electrolytes for Flow Battery Applications. , 2017, Journal of the American Chemical Society.

[54]  Sean E. Doris,et al.  Macromolecular Design Strategies for Preventing Active-Material Crossover in Non-Aqueous All-Organic Redox-Flow Batteries. , 2017, Angewandte Chemie.

[55]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[56]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[57]  Fikile R. Brushett,et al.  High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries , 2016 .

[58]  U. Schubert,et al.  TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries , 2016 .

[59]  Rajeev S. Assary,et al.  Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers , 2016 .

[60]  Joaquín Rodríguez-López,et al.  Redox Active Colloids as Discrete Energy Storage Carriers. , 2016, Journal of the American Chemical Society.

[61]  Joaquín Rodríguez-López,et al.  Redox Active Polymers as Soluble Nanomaterials for Energy Storage. , 2016, Accounts of chemical research.

[62]  David M. Reed,et al.  A High-Current, Stable Nonaqueous Organic Redox Flow Battery , 2016 .

[63]  Rajeev S. Assary,et al.  The lightest organic radical cation for charge storage in redox flow batteries , 2016, Scientific Reports.

[64]  Fikile R. Brushett,et al.  Recent advances in molecular engineering of redox active organic molecules for nonaqueous flow batteries , 2016 .

[65]  U. Schubert,et al.  Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries , 2016 .

[66]  Fikile R. Brushett,et al.  A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR , 2016 .

[67]  Ke Gong,et al.  Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs , 2015, Energy & Environmental Science.

[68]  Joaquín Rodríguez-López,et al.  Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. , 2015, Journal of the American Chemical Society.

[69]  G. Soloveichik Flow Batteries: Current Status and Trends. , 2015, Chemical reviews.

[70]  Bin Li,et al.  Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery. , 2015, Angewandte Chemie.

[71]  Fikile R. Brushett,et al.  A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries , 2015 .

[72]  K. Amine,et al.  An organophosphine oxide redox shuttle additive that delivers long-term overcharge protection for 4 V lithium-ion batteries , 2015 .

[73]  Corrine F. Elliott,et al.  N-substituted phenothiazine derivatives: how the stability of the neutral and radical cation forms affects overcharge performance in lithium-ion batteries. , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[74]  Y. Kato,et al.  A Highly Concentrated Catholyte Based on a Solvate Ionic Liquid for Rechargeable Flow Batteries , 2015, Advanced materials.

[75]  R. Savinell,et al.  Metal acetylacetonate complexes for high energy density non-aqueous redox flow batteries , 2015 .

[76]  Anthony K. Burrell,et al.  Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries , 2015 .

[77]  Corrine F. Elliott,et al.  The fate of phenothiazine-based redox shuttles in lithium-ion batteries. , 2015, Physical chemistry chemical physics : PCCP.

[78]  Takashi Sukegawa,et al.  Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP , 2014 .

[79]  Lelia Cosimbescu,et al.  TEMPO‐Based Catholyte for High‐Energy Density Nonaqueous Redox Flow Batteries , 2014, Advanced materials.

[80]  Kyoung-Hee Shin,et al.  A metal-free and all-organic redox flow battery with polythiophene as the electroactive species , 2014 .

[81]  Joaquín Rodríguez-López,et al.  Impact of redox-active polymer molecular weight on the electrochemical properties and transport across porous separators in nonaqueous solvents. , 2014, Journal of the American Chemical Society.

[82]  Kevin G. Gallagher,et al.  Pathways to Low Cost Electrochemical Energy Storage: A Comparison of Aqueous and Nonaqueous Flow Batteries , 2014 .

[83]  G. Cosa,et al.  Electronic excited state redox properties for BODIPY dyes predicted from Hammett constants: estimating the driving force of photoinduced electron transfer. , 2014, The journal of physical chemistry. A.

[84]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[85]  Weidong Zhou,et al.  Increasing the gravimetric energy density of organic based secondary battery cathodes using small radius cations (Li+ and Mg2+). , 2013, Journal of the American Chemical Society.

[86]  Xueping Gao,et al.  A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. , 2013, ChemSusChem.

[87]  Fikile R. Brushett,et al.  An All‐Organic Non‐aqueous Lithium‐Ion Redox Flow Battery , 2012 .

[88]  Lu Zhang,et al.  Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection , 2012 .

[89]  Bin Li,et al.  Recent Progress in Redox Flow Battery Research and Development , 2012 .

[90]  M. I. Marzouk,et al.  The electrochemistry of some ferrocene derivatives: redox potential and substituent effects , 2003 .

[91]  Corwin Hansch,et al.  A survey of Hammett substituent constants and resonance and field parameters , 1991 .

[92]  D. Job,et al.  Substituent effect on the oxidation of phenols and aromatic amines by horseradish peroxidase compound I. , 1976, European journal of biochemistry.

[93]  Tjerk Hagemeijer This Journal , 1956, Archives of otolaryngology--head & neck surgery.

[94]  J. Lemmon,et al.  A low potential solvent-miscible 3-methylbenzophenone anolyte material for high voltage and energy density all-organic flow battery , 2020 .

[95]  T. Zhao,et al.  A high power density and long cycle life vanadium redox flow battery , 2020 .

[96]  Jeffrey S. Moore,et al.  Redox active polymers for non-aqueous redox flow batteries: Validation of the size-exclusion approach , 2017 .

[97]  Jonathan F. Kucharyson Structure-Function Relationships of Metal Coordination Complexes for Non-Aqueous Redox Flow Batteries , 2017 .

[98]  Tuti Mariana Lim,et al.  Recent Advancements in All‐Vanadium Redox Flow Batteries , 2016 .

[99]  James R. McKone,et al.  On the Benefits of a Symmetric Redox Flow Battery , 2016 .

[100]  R. Service Tanks for the batteries. , 2014, Science.

[101]  Dong Fang,et al.  Electrochemical Properties of an All-Organic Redox Flow Battery Using 2,2,6,6-Tetramethyl-1-Piperidinyloxy and N-Methylphthalimide , 2011 .