Next-generation (epi)genetic drivers of childhood brain tumours and the outlook for targeted therapies.

[1]  Gary D Bader,et al.  Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma , 2014, Nature.

[2]  R. Beroukhim,et al.  Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition , 2014, Nature Medicine.

[3]  Gabor T. Marth,et al.  Novel somatic and germline mutations in intracranial germ cell tumours , 2014, Nature.

[4]  R. McLendon,et al.  Exome sequencing identifies somatic gain-of-function PPM1D mutations in brainstem gliomas , 2014, Nature Genetics.

[5]  M. Shago,et al.  CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entity , 2014, Acta Neuropathologica.

[6]  David T. W. Jones,et al.  Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing , 2014, Nature.

[7]  J. Olson,et al.  Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. , 2014, Cancer cell.

[8]  Stephen Yip,et al.  Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma , 2014, Nature Genetics.

[9]  Liliana Goumnerova,et al.  Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma , 2014, Nature Genetics.

[10]  Amar Gajjar,et al.  The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma , 2014, Nature Genetics.

[11]  Stefan M. Pfister,et al.  The WIP1 Oncogene Promotes Progression and Invasion of Aggressive Medulloblastoma Variants , 2014, Oncogene.

[12]  Roland Eils,et al.  Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. , 2014, Cancer cell.

[13]  Michael Brudno,et al.  Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations , 2014, Nature Genetics.

[14]  Li Ding,et al.  C11orf95-RELA fusions drive oncogenic NF-κB signaling in ependymoma , 2014, Nature.

[15]  Gary D Bader,et al.  Epigenomic alterations define lethal CIMP-positive ependymomas of infancy , 2014, Nature.

[16]  A. Otsuka,et al.  Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas , 2014, Acta Neuropathologica.

[17]  John Y. K. Lee,et al.  Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas , 2014, Nature Genetics.

[18]  Volker Hovestadt,et al.  Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity , 2013, Acta Neuropathologica.

[19]  Nada Jabado,et al.  Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR , 2013, Nature Genetics.

[20]  R. Beroukhim,et al.  BET Bromodomain Inhibition of MYC-Amplified Medulloblastoma , 2013, Clinical Cancer Research.

[21]  David T. W. Jones,et al.  Reduced H3K27me3 and DNA hypomethylation are major drivers of gene expression in K27M mutant pediatric high-grade gliomas. , 2013, Cancer cell.

[22]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[23]  Scott L. Pomeroy,et al.  TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma , 2013, Acta Neuropathologica.

[24]  Barbara S. Paugh,et al.  Novel oncogenic PDGFRA mutations in pediatric high-grade gliomas. , 2013, Cancer research.

[25]  H. Kimura,et al.  JMJD1C, a JmjC Domain-Containing Protein, Is Required for Long-Term Maintenance of Male Germ Cells in Mice1 , 2013, Biology of reproduction.

[26]  J. Huse,et al.  Evaluation of Histone 3 Lysine 27 Trimethylation (H3K27me3) and Enhancer of Zest 2 (EZH2) in Pediatric Glial and Glioneuronal Tumors Shows Decreased H3K27me3 in H3F3A K27M Mutant Glioblastomas , 2013, Brain pathology.

[27]  J. Schmid,et al.  The complexity of NF-κB signaling in inflammation and cancer , 2013, Molecular Cancer.

[28]  Roland Eils,et al.  Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma , 2013, Nature Genetics.

[29]  B. Garcia,et al.  Inhibition of PRC2 Activity by a Gain-of-Function H3 Mutation Found in Pediatric Glioblastoma , 2013, Science.

[30]  A. Ashworth,et al.  Histone H3.3. mutations drive pediatric glioblastoma through upregulation of MYCN. , 2013, Cancer discovery.

[31]  Sabine Mueller,et al.  The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. , 2013, Genes & development.

[32]  Liliana Goumnerova,et al.  Genomic analysis of diffuse pediatric low-grade gliomas identifies recurrent oncogenic truncating rearrangements in the transcription factor MYBL1 , 2013, Proceedings of the National Academy of Sciences.

[33]  Heather L. Mulder,et al.  Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas , 2013, Nature Genetics.

[34]  Gary L. Gallia,et al.  TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal , 2013, Proceedings of the National Academy of Sciences.

[35]  J. Korbel,et al.  Criteria for Inference of Chromothripsis in Cancer Genomes , 2013, Cell.

[36]  Steven J. M. Jones,et al.  Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma , 2013, Acta Neuropathologica.

[37]  David T. W. Jones,et al.  Mutations in SETD2 and genes affecting histone H3K36 methylation target hemispheric high-grade gliomas , 2013, Acta Neuropathologica.

[38]  Scott L. Pomeroy,et al.  Medulloblastomics: the end of the beginning , 2012, Nature Reviews Cancer.

[39]  J. Barnholtz-Sloan,et al.  CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. , 2012, Neuro-oncology.

[40]  N. Smoll,et al.  The incidence of medulloblastomas and primitive neurectodermal tumours in adults and children , 2012, Journal of Clinical Neuroscience.

[41]  David T. W. Jones,et al.  Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. , 2012, Cancer cell.

[42]  D. Brat,et al.  Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma , 2012, Science.

[43]  Hideo Nakamura,et al.  Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. , 2012, The Lancet. Oncology.

[44]  Kristian Cibulskis,et al.  A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. , 2012, The Journal of clinical investigation.

[45]  Matthew J. Betts,et al.  Dissecting the genomic complexity underlying medulloblastoma , 2012, Nature.

[46]  Jill P. Mesirov,et al.  MEDULLOBLASTOMA EXOME SEQUENCING UNCOVERS SUBTYPE-SPECIFIC SOMATIC MUTATIONS , 2012, Nature.

[47]  P. Northcott,et al.  Molecular subgroups of medulloblastoma , 2012, Expert review of neurotherapeutics.

[48]  Elaine R. Mardis,et al.  Novel mutations target distinct subgroups of medulloblastoma , 2012, Nature.

[49]  David T. W. Jones,et al.  Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma , 2012, Nature.

[50]  David T. W. Jones,et al.  Genome Sequencing of Pediatric Medulloblastoma Links Catastrophic DNA Rearrangements with TP53 Mutations , 2012, Cell.

[51]  Li Ding,et al.  Somatic Histone H3 Alterations in Paediatric Diffuse Intrinsic Pontine Gliomas and Non-Brainstem Glioblastomas , 2012, Nature Genetics.

[52]  David T. W. Jones,et al.  MAPK pathway activation in pilocytic astrocytoma , 2011, Cellular and Molecular Life Sciences.

[53]  Scott L. Pomeroy,et al.  Molecular subgroups of medulloblastoma: the current consensus , 2011, Acta Neuropathologica.

[54]  T. Möröy,et al.  Growth factor independence 1 (Gfi1) as a regulator of lymphocyte development and activation. , 2011, Seminars in immunology.

[55]  W. Yung,et al.  An integrated in vitro and in vivo high-throughput screen identifies treatment leads for ependymoma. , 2011, Cancer cell.

[56]  Gary D Bader,et al.  Delineation of two clinically and molecularly distinct subgroups of posterior fossa ependymoma. , 2011, Cancer cell.

[57]  Amar Gajjar,et al.  Cross-species genomics matches driver mutations and cell compartments to model ependymoma , 2010, Nature.

[58]  B. Scheithauer,et al.  Focal genomic amplification at 19q13.42 comprises a powerful diagnostic marker for embryonal tumors with ependymoblastic rosettes , 2010, Acta Neuropathologica.

[59]  Jeremy Stinson,et al.  Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. , 2009, The New England journal of medicine.

[60]  V. P. Collins,et al.  Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. , 2009, Cancer cell.

[61]  B. Hinkes,et al.  Long-term outcome and clinical prognostic factors in children with medulloblastoma treated in the prospective randomised multicentre trial HIT'91. , 2009, European journal of cancer.

[62]  Paul A. Northcott,et al.  Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma , 2009, Nature Genetics.

[63]  T. Merchant,et al.  Conformal radiotherapy after surgery for paediatric ependymoma: a prospective study. , 2009, The Lancet. Oncology.

[64]  Tomokazu Fukuda,et al.  BMP type I receptor inhibition reduces heterotopic ossification , 2008, Nature Medicine.

[65]  David T. W. Jones,et al.  Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. , 2008, Cancer research.

[66]  B. Scheithauer,et al.  The 2007 WHO Classification of Tumours of the Central Nervous System , 2007, Acta Neuropathologica.

[67]  T. Merchant,et al.  Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. , 2006, The Lancet. Oncology.

[68]  Amar Gajjar,et al.  Radial glia cells are candidate stem cells of ependymoma. , 2005, Cancer cell.

[69]  J. Biegel,et al.  Immunohistochemical Analysis of hSNF5/INI1 in Pediatric CNS Neoplasms , 2004, The American journal of surgical pathology.

[70]  S. Hirohashi,et al.  Short Communication Craniopharyngiomas of Adamantinomatous Type Harbor -Catenin Gene Mutations , 2002 .

[71]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[72]  E. Bouffet,et al.  Chemotherapy for intracranial ependymomas , 1999, Child's Nervous System.

[73]  Olivier Delattre,et al.  Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer , 1998, Nature.

[74]  C. James,et al.  Sporadic medulloblastomas contain PTCH mutations. , 1997, Cancer research.

[75]  Michael Dean,et al.  Mutations of the Human Homolog of Drosophila patched in the Nevoid Basal Cell Carcinoma Syndrome , 1996, Cell.

[76]  R. Myers,et al.  Human Homolog of patched, a Candidate Gene for the Basal Cell Nevus Syndrome , 1996, Science.

[77]  Steven J. M. Jones,et al.  Subgroup-specific structural variation across 1,000 medulloblastoma genomes , 2012, Nature.

[78]  In Ho Choi,et al.  A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva , 2006, Nature Genetics.

[79]  David Hogg,et al.  Mutations in SUFU predispose to medulloblastoma , 2002, Nature Genetics.

[80]  J. Biegel,et al.  Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. , 1999, Cancer research.