dyngen: a multi-modal simulator for spearheading new single-cell omics analyses

We present dyngen, a novel, multi-modal simulation engine for studying dynamic cellular processes at single-cell resolution. dyngen is more flexible than current single-cell simulation engines, and allows better method development and benchmarking, thereby stimulating development and testing of novel computational methods. We demonstrate its potential for spearheading novel computational methods on three novel applications: aligning cell developmental trajectories, single-cell regulatory network inference and estimation of RNA velocity.

[1]  Chrystopher L. Nehaniv,et al.  Bio-Logic: Gene Expression and the Laws of Combinatorial Logic , 2008, Artificial Life.

[2]  John Quackenbush,et al.  Estimating Sample-Specific Regulatory Networks , 2015, iScience.

[3]  Jehoshua Bruck,et al.  A probabilistic model of a prokaryotic gene and its regulation , 1999 .

[4]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[5]  P. Geurts,et al.  Inferring Regulatory Networks from Expression Data Using Tree-Based Methods , 2010, PloS one.

[6]  Nir Yosef,et al.  Simulating multiple faceted variability in single cell RNA sequencing , 2019, Nature Communications.

[7]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[8]  K. Aihara,et al.  Personalized characterization of diseases using sample-specific networks , 2016, bioRxiv.

[9]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[10]  Johannes Söding,et al.  PROSSTT: probabilistic simulation of single-cell RNA-seq data for complex differentiation processes , 2018, bioRxiv.

[11]  T. M. Murali,et al.  Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data , 2019, Nature Methods.

[12]  Cole Trapnell,et al.  Aligning Single-Cell Developmental and Reprogramming Trajectories Identifies Molecular Determinants of Myogenic Reprogramming Outcome. , 2018, Cell systems.

[13]  Deepak Kumar Jha,et al.  Reconstruction of complex single-cell trajectories using CellRouter , 2018, Nature Communications.

[14]  T. Enver,et al.  Forcing cells to change lineages , 2009, Nature.

[15]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[16]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[17]  Hector Roux de Bézieux,et al.  Trajectory-based differential expression analysis for single-cell sequencing data , 2019, Nature Communications.

[18]  Fabian J Theis,et al.  Generalizing RNA velocity to transient cell states through dynamical modeling , 2019, Nature Biotechnology.

[19]  Jean Yee Hwa Yang,et al.  scClassify: hierarchical classification of cells , 2019 .

[20]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[21]  Charlotte Soneson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data , 2018, F1000Research.

[22]  Christoph Ziegenhain,et al.  powsimR: Power analysis for bulk and single cell RNA-seq experiments , 2017, bioRxiv.

[23]  Joshua M. Stuart,et al.  Combining tumor genome simulation with crowdsourcing to benchmark somatic single-nucleotide-variant detection , 2015, Nature Methods.

[24]  Dario Floreano,et al.  Generating Realistic In Silico Gene Networks for Performance Assessment of Reverse Engineering Methods , 2009, J. Comput. Biol..

[25]  Cole Trapnell,et al.  A pooled single-cell genetic screen identifies regulatory checkpoints in the continuum of the epithelial-to-mesenchymal transition , 2019, Nature Genetics.

[26]  R. Grima,et al.  Spatial Stochastic Intracellular Kinetics: A Review of Modelling Approaches , 2018, Bulletin of Mathematical Biology.

[27]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, Genome Biology.

[28]  J. Ferrell Bistability, Bifurcations, and Waddington's Epigenetic Landscape , 2012, Current Biology.

[29]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[30]  Yvan Saeys,et al.  Essential guidelines for computational method benchmarking , 2018, Genome Biology.

[31]  S. Shen-Orr,et al.  Alignment of single-cell trajectories to compare cellular expression dynamics , 2018, Nature Methods.

[32]  Mika Gustafsson,et al.  Digital twins to personalize medicine , 2019, Genome Medicine.

[33]  Konstantinos Biliouris,et al.  Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8 , 2015, Nature Immunology.

[34]  Jin Wang,et al.  Quantifying the Waddington landscape and biological paths for development and differentiation , 2011, Proceedings of the National Academy of Sciences.

[35]  Russell B. Fletcher,et al.  Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics , 2017, BMC Genomics.

[36]  S. Pääbo,et al.  Organoid single-cell genomic atlas uncovers human-specific features of brain development , 2019, Nature.

[37]  R. Gonzalo Parra,et al.  Reconstructing complex lineage trees from scRNA-seq data using MERLoT , 2018 .

[38]  John Quackenbush,et al.  lionessR: single sample network inference in R , 2019, BMC Cancer.

[39]  N. Rekhtman,et al.  Direct interaction of hematopoietic transcription factors PU.1 and GATA-1: functional antagonism in erythroid cells. , 1999, Genes & development.

[40]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[41]  Dario Floreano,et al.  GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods , 2011, Bioinform..

[42]  Eytan Domany,et al.  Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli , 2013 .

[43]  C. Huttenhower,et al.  Passing Messages between Biological Networks to Refine Predicted Interactions , 2013, PloS one.

[44]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[45]  Derek W Wright,et al.  Gateways to the FANTOM5 promoter level mammalian expression atlas , 2015, Genome Biology.

[46]  Toni Giorgino,et al.  Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package , 2009 .