Modeling Costs of Turns in Route Planning

In this paper a model that handles costs of turns in route planning is defined, investigated and discussed. Costs are traditionally attached to edges in a graph. For some important route planning problems other costs can be identified, namely costs that appear when leaving one edge and entering the next. Examples are turn restrictions, the turning angle, or the simple necessity to turn. Such costs cannot be stored as attributes of nodes or edges in the graph, and they cannot be handled correctly by shortest path algorithms without modifications. Turn costs can be represented by a pseudo-dual graph in a way that shortest path algorithms run without modifications. Although the idea is not new, it has not found much interest in the literature. The pseudo-dual graph is defined here in a new way, it is systematically investigated, and some practical applications are shown. Concentrating strictly on topology, it turns out that the pseudo-dual graph is conceptually cleaner and more efficient in route planning than alternative, currently used ways to deal with turn costs. The discussed applications are from the field of pedestrian navigation, which gave rise to this research.

[1]  Chris Reade,et al.  ML for the Working Programmer (2nd edition) by L. C. Paulson, Cambridge University Press, 1996. A Practical Course in Functional Programming Using Standard ML by R. Bosworth, McGraw Hill, 1996. , 1997, Journal of Functional Programming.

[2]  Andrew U. Frank,et al.  Theories and Methods of Spatio-Temporal Reasoning in Geographic Space , 1992, Lecture Notes in Computer Science.

[3]  Esther M. Arkin,et al.  Computing a shortest k-link path in a polygon , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[4]  M. Gluck Making Sense of Human Wayfinding: Review of Cognitive and Linguistic Knowledge for Personal Navigation with a New Research Direction , 1991 .

[5]  Michael F. Worboys,et al.  GIS : a computing perspective , 2004 .

[6]  Nicos Christofides,et al.  Graph theory: An algorithmic approach (Computer science and applied mathematics) , 1975 .

[7]  Herbert S. Wilf,et al.  The interchange graph of a finite graph , 1965 .

[8]  Ovidiu Daescu,et al.  On Geometric Path Query Problems , 1997, Int. J. Comput. Geom. Appl..

[9]  Frank Harary,et al.  Graph Theory , 2016 .

[10]  Sabine Timpf,et al.  A Conceptual Model of Wayfinding Using Multiple Levels of Abstraction , 1992, Spatio-Temporal Reasoning.

[11]  Sabine Timpf Ontologies of Wayfinding: a Traveler's Perspective , 2002 .

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[14]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[15]  Paul Hudak,et al.  A gentle introduction to Haskell , 1992, SIGP.

[16]  R. Dalton The Secret Is To Follow Your Nose , 2001 .

[17]  J. Sack,et al.  Handbook of computational geometry , 2000 .

[18]  Jürgen Sellen,et al.  Direction weighted shortest path planning , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[19]  Lawrence C. Paulson,et al.  ML for the working programmer (2. ed.) , 1996 .

[20]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[21]  M. Denis,et al.  Spatial discourse and navigation: an analysis of route directions in the city of Venice , 1999 .

[22]  Andrew U. Frank,et al.  Influence of estimation errors on wayfinding-decisions in unknown street networks – analyzing the least-angle strategy , 2001, Spatial Cogn. Comput..

[23]  R. Bellman,et al.  On kth Best Policies , 1960 .

[24]  Dirk Theune,et al.  Robuste und effiziente Methoden zur Lösung von Wegproblemen , 1995, Teubner-Texte zur Informatik.

[25]  R. M. Downs,et al.  Kognitive Karten : die Welt in unseren Köpfen , 1982 .

[26]  Danny Ziyi Chen Developing algorithms and software for geometric path planning problems , 1996, CSUR.

[27]  Stephan Winter,et al.  Route Specifications with a Linear Dual Graph , 2002 .

[28]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[29]  H. Whitney Congruent Graphs and the Connectivity of Graphs , 1932 .

[30]  Simon Thompson,et al.  Haskell: The Craft of Functional Programming , 1996 .

[31]  P. Heidorn,et al.  Chapter 7 The Structure of Cognitive Maps: Representations and Processes , 1993 .

[32]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[33]  Stephan Winter Weighting the path continuation in route planning , 2001 .

[34]  C. Piatko,et al.  Geometric Bicriteria Optimal Path Problems , 1993 .

[35]  Cc in GIScience,et al.  Unit 183 - Transportation Networks , 2000 .

[36]  Richard S. Bird,et al.  Algebra of programming , 1997, Prentice Hall International series in computer science.

[37]  J. Anez,et al.  Dual graph representation of transport networks , 1996 .

[38]  J. Y. Yen Finding the K Shortest Loopless Paths in a Network , 1971 .

[39]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[40]  Tom Caldwell,et al.  On finding minimum routes in a network with turn penalties , 1961, CACM.

[41]  Erik Poll,et al.  Algebra of Programming by Richard Bird and Oege de Moor, Prentice Hall, 1996 (dated 1997). , 1999 .

[42]  R Conroy-Dalton The secret is to follow your nose: route path selection and angularity , 2001 .

[43]  Richard Pavley,et al.  A Method for the Solution of the Nth Best Path Problem , 1959, JACM.

[44]  E. Kay,et al.  Graph Theory. An Algorithmic Approach , 1975 .

[45]  Stephan Winter,et al.  Navigation information for pedestrians from city maps , 2001 .

[46]  Jörg-Rüdiger Sack,et al.  Link Distance Problems , 2000, Handbook of Computational Geometry.

[47]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[48]  M. V. Wilkes,et al.  The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .

[49]  Ralf Hinze,et al.  Haskell 98 — A Non−strict‚ Purely Functional Language , 1999 .

[50]  David Eppstein,et al.  Finding the k Shortest Paths , 1999, SIAM J. Comput..