The Radial Propagation of Heat in Strongly Driven Non-Equilibrium Fusion Plasmas

Heat transport is studied in strongly heated fusion plasmas, far from thermodynamic equilibrium. The radial propagation of perturbations is studied using a technique based on the transfer entropy. Three different magnetic confinement devices are studied, and similar results are obtained. “Minor transport barriers” are detected that tend to form near rational magnetic surfaces, thought to be associated with zonal flows. Occasionally, heat transport “jumps” over these barriers, and this “jumping” behavior seems to increase in intensity when the heating power is raised, suggesting an explanation for the ubiquitous phenomenon of “power degradation” observed in magnetically confined plasmas. Reinterpreting the analysis results in terms of a continuous time random walk, “fast” and “slow” transport channels can be discerned. The cited results can partially be understood in the framework of a resistive Magneto-HydroDynamic model. The picture that emerges shows that plasma self-organization and competing transport mechanisms are essential ingredients for a fuller understanding of heat transport in fusion plasmas.

[1]  Paul W. Terry,et al.  Influence of sheared poloidal rotation on edge turbulence , 1990 .

[2]  R Balesc,et al.  Aspects of anomalous transport in plasmas , 2005 .

[3]  V. Lynch,et al.  Sheared flow amplification by vacuum magnetic islands in stellarator plasmas , 2001 .

[4]  J. Rice,et al.  Double transport barrier experiments on Alcator C-Mod , 2002 .

[5]  S. Zweben Principles of Plasma Diagnostics , 1990 .

[6]  E. Solano,et al.  Radial variation of heat transport in L-mode JET discharges , 2019, Nuclear Fusion.

[7]  Benjamin A. Carreras,et al.  Progress in anomalous transport research in toroidal magnetic confinement devices , 1997 .

[8]  Mixed SOC diffusive dynamics as a paradigm for transport in fusion devices , 2001 .

[9]  Thomas J. Dolan,et al.  Plasma Physics and Fusion Energy , 2008 .

[10]  N. L. Cardozo,et al.  Perturbative transport studies in fusion plasmas , 1995 .

[11]  Vickie E. Lynch,et al.  Electron diamagnetic effects on the resistive pressure‐gradient‐driven turbulence and poloidal flow generation , 1991 .

[12]  B. Carreras,et al.  Study of radial heat transport in W7-X using the transfer entropy , 2018 .

[13]  B. Carreras,et al.  The causal relation between turbulent particle flux and density gradient , 2016 .

[14]  Liang,et al.  Self-Regulating Shear Flow Turbulence: A Paradigm for the L to H Transition. , 1994, Physical review letters.

[15]  F. Ryter,et al.  Perturbative studies of turbulent transport in fusion plasmas , 2006 .

[16]  J. Contributors,et al.  Analysis and modelling of power modulation experiments in JET plasmas with internal transport barriers , 2006 .

[17]  Applicability of transfer entropy for the calculation of effective diffusivity in heat transport , 2018, Physics of Plasmas.

[18]  B. Carreras,et al.  Relation of plasma flow structures to passive particle tracer orbits , 2017 .

[19]  Tracer particle trapping times in pressure-gradient-driven turbulence in toroidal geometry and their connection to the dynamics of large-scale cycles , 2010 .

[20]  Guillaume Latu,et al.  The $\bf {E × B}$ staircase of magnetised plasmas , 2017 .

[21]  H.-J. Hartfuß,et al.  Fusion Plasma Diagnostics with mm-Waves: An Introduction , 2013 .

[22]  R. A. Dory,et al.  SPECIAL TOPIC: Energy confinement scaling from the international stellarator database , 1995 .

[23]  R. Budny,et al.  Perturbative transport experiments in JET low or reverse magnetic shear plasmas* Perturbative transp , 2002 .

[24]  C. D. Challis,et al.  Internal transport barrier triggering by rational magnetic flux surfaces in tokamaks , 2003 .

[25]  F. Sardei,et al.  Major results from the stellarator Wendelstein 7-AS (Review Article) , 2008 .

[26]  Dirk Timmermann,et al.  Major results from the first plasma campaign of the Wendelstein 7-X stellarator , 2017 .

[27]  A. Fujisawa Transport barriers and bifurcation characteristics in stellarators , 2002 .

[28]  X. Garbet,et al.  The E × B staircase of magnetised plasmas , 2017 .

[29]  J. D. Bell,et al.  Heat pulse propagation studies in TFTR , 1986 .

[30]  M. Shlesinger,et al.  Stochastic pathway to anomalous diffusion. , 1987, Physical review. A, General physics.

[31]  Vickie E. Lynch,et al.  Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model , 2001 .

[32]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[33]  L. Pacios,et al.  First plasmas in the TJ-II flexible Heliac , 1999 .

[34]  Thomas Geist,et al.  Fusion Plasma Diagnostics with mm-Waves: Hartfuß/Fusion Plasma Diagnostics with mm-Waves , 2013 .

[35]  R. C. Wolf,et al.  Internal transport barriers in tokamak plasmas , 2003 .

[36]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[37]  E × B Staircases and Barrier Permeability in 1 Magnetised Plasmas , 2016 .

[38]  G. Vandersteen,et al.  Separation of transport in slow and fast time-scales using modulated heat pulse experiments (hysteresis in flux explained) , 2018, Nuclear Fusion.

[39]  Werner Burkart Status report on fusion research , 2005 .

[40]  B. Carreras,et al.  The impact of rational surfaces on radial heat transport in TJ-II , 2017, 1701.04574.

[41]  B. V. van Milligen,et al.  Causality detection and turbulence in fusion plasmas , 2013, 1309.7769.

[42]  staircases and barrier permeability in magnetised plasmas , 2017 .

[43]  Giuseppe Gorini,et al.  Electron thermal transport in RTP: filaments, barriers and bifurcations , 1997 .

[44]  T. S. Hahm,et al.  Zonal flows in plasma—a review , 2005 .

[45]  A. Werner,et al.  Physical model assessment of the energy confinement time scaling in stellarators , 2007 .

[46]  J. Contributors,et al.  Accuracy of EFIT equilibrium reconstruction with internal diagnostic information at JET. , 2008, The Review of scientific instruments.

[47]  G. Hogeweij,et al.  Electron thermal transport barriers in RTP: experiment and modelling , 2001 .

[48]  J. Callen,et al.  On measuring the electron heat diffusion coefficient in atokamak from sawtooth oscillation observations , 1979 .

[49]  Á. Cappa,et al.  A possible mechanism for confinement power degradation in the TJ-II stellarator , 2018, Physics of Plasmas.

[50]  B. Carreras,et al.  Width and rugosity of the topological plasma flow structures and their relation to the radial flights of particle tracers , 2015 .