Can we make sense out of "Tensor Field Theory"?

We continue the constructive program about tensor field theory through the next natural model, namely the rank five tensor theory with quartic melonic interactions and propagator inverse of the Laplacian on \mathbf{U(1)^5}𝐔(1)5. We make a first step towards its construction by establishing its power counting, identifying the divergent graphs and performing a careful study of (a slight modification of) its RG flow. Thus we give strong evidence that this just renormalizable tensor field theory is non perturbatively asymptotically free.

[1]  Renormalizable Tensor Field Theories , 2016, 1601.08213.

[2]  D. O. Samary,et al.  Just Renormalizable TGFT’s on U(1)d with Gauge Invariance , 2012, Communications in Mathematical Physics.

[3]  V. N. Gribov,et al.  Quantization of non-Abelian gauge theories , 1978 .

[4]  G. Schaeffer,et al.  Regular colored graphs of positive degree , 2013, 1307.5279.

[5]  J. Ryan,et al.  Colored Tensor Models - a Review , 2011, 1109.4812.

[6]  S. Coleman In The whys of subnuclear physics , 1977 .

[7]  Sylvain Carrozza Large N limit of irreducible tensor models: O(N) rank-3 tensors with mixed permutation symmetry , 2018, Journal of High Energy Physics.

[8]  M. Gross Tensor models and simplicial quantum gravity in >2-D , 1992 .

[9]  H. Krieger,et al.  Complex dynamics , 2012, Veterinary Record.

[10]  R. Gurau The complete 1/N expansion of a SYK–like tensor model , 2016, 1611.04032.

[11]  V. Rivasseau,et al.  Universality and Borel Summability of Arbitrary Quartic Tensor Models , 2014, 1403.0170.

[12]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[13]  M. Abate Discrete holomorphic local dynamical systems , 2009, 0903.3289.

[14]  Martin Hairer,et al.  Renormalising SPDEs in regularity structures , 2017, 1711.10239.

[15]  R. Gurau The 1/N Expansion of Tensor Models Beyond Perturbation Theory , 2013, 1304.2666.

[16]  Naoki Sasakura,et al.  TENSOR MODEL FOR GRAVITY AND ORIENTABILITY OF MANIFOLD , 1991 .

[17]  V. Rivasseau,et al.  Double scaling in tensor models with a quartic interaction , 2013, 1307.5281.

[18]  V. Rivasseau,et al.  The Tensor Track V: Holographic Tensors , 2018, Proceedings of Corfu Summer Institute 2017 "Schools and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2017).

[19]  Vincent Rivasseau,et al.  From Perturbative to Constructive Renormalization , 1991 .

[20]  Vincent Rivasseau,et al.  Bounds on renormalized Feynman graphs , 1985 .

[21]  Joseph Ben Geloun,et al.  A Renormalizable 4-Dimensional Tensor Field Theory , 2011, 1111.4997.

[22]  V. Rivasseau Loop vertex expansion for higher-order interactions , 2017, 1702.07602.

[23]  G. Hooft Can we make sense out of "Quantum Chromodynamics"? , 1977 .

[24]  R. Gurău,et al.  Lost in translation: topological singularities in group field theory , 2010, 1108.4966.

[25]  R. Gurau The 1/N Expansion of Colored Tensor Models , 2010, 1011.2726.

[26]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[27]  Vincent Rivasseau,et al.  The 1/N expansion of colored tensor models in arbitrary dimension , 2011, 1101.4182.

[28]  H. Grosse,et al.  Renormalisation of ϕ4-Theory on Noncommutative ℝ4 in the Matrix Base , 2004, hep-th/0401128.

[29]  Vincent Rivasseau,et al.  Quantum Gravity and Renormalization: The Tensor Track , 2011, 1112.5104.

[30]  R. Gurău,et al.  Invitation to Random Tensors , 2016, 1609.06439.

[31]  W. Zlmmbrmann Convergence of Bogoliubov’s Method of Renormalization in Momentum Space , 2000 .

[32]  V. Rivasseau,et al.  Constructive Tensor Field Theory: the $${T^4_3}$$T34 Model , 2014, 1412.5091.

[33]  V. Rivasseau,et al.  Constructive Matrix Theory for Higher Order Interaction II: Hermitian and Real Symmetric Cases , 2019, Annales Henri Poincaré.

[34]  Valentin Bonzom,et al.  Random tensor models in the large N limit: Uncoloring the colored tensor models , 2012, 1202.3637.

[35]  V. Rivasseau Why are tensor field theories asymptotically free? , 2015, EPL (Europhysics Letters).

[36]  Razvan Gurau,et al.  The Complete 1/N Expansion of Colored Tensor Models in Arbitrary Dimension , 2011, 1102.5759.

[37]  V. Rivasseau The tensor track, III , 2013, 1311.1461.

[38]  I. Klebanov,et al.  Uncolored random tensors, melon diagrams, and the Sachdev-Ye-Kitaev models , 2016, 1611.08915.

[39]  Luca Lionni,et al.  Colored Triangulations of Arbitrary Dimensions are Stuffed Walsh Maps , 2017, Electron. J. Comb..

[40]  Li Jin-q,et al.  Hopf algebras , 2019, Graduate Studies in Mathematics.

[41]  N. N. Bogoliubow,et al.  Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder , 1957 .

[42]  V. Rivasseau,et al.  The Tensor Track VI: Field Theory on Random Trees and SYK on Random Unicyclic Graphs , 2020, Proceedings of Corfu Summer Institute 2019 "School and Workshops on Elementary Particle Physics and Gravity" — PoS(CORFU2019).

[43]  J. Magnen,et al.  Linearized group field theory and power-counting theorems , 2010, 1002.3592.

[44]  Alain Connes,et al.  Hopf Algebras, Renormalization and Noncommutative Geometry , 1998 .

[45]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[46]  V. Rivasseau The Tensor Track: an Update , 2012, 1209.5284.

[47]  V. Rivasseau The Tensor Track, IV , 2016, 1604.07860.

[48]  V. Rivasseau Constructive Tensor Field Theory , 2016, 1603.07312.

[49]  E. Witten An SYK-like model without disorder , 2016, Journal of Physics A: Mathematical and Theoretical.

[50]  G. B. Arous,et al.  The Landscape of the Spiked Tensor Model , 2017, Communications on Pure and Applied Mathematics.

[51]  Martin Hairer,et al.  An analytic BPHZ theorem for regularity structures , 2016, 1612.08138.

[52]  V. Rivasseau,et al.  The Multiscale Loop Vertex Expansion , 2013, 1312.7226.

[53]  Adrian Tanasa,et al.  O(N) Random Tensor Models , 2015, 1512.06718.

[54]  J. Polchinski,et al.  The spectrum in the Sachdev-Ye-Kitaev model , 2016, 1601.06768.

[55]  Frank Loray Pseudo-groupe d'une singularité de feuilletage holomorphe en dimension deux , 2021 .

[56]  V. Rivasseau,et al.  Constructive Matrix Theory for Higher-Order Interaction , 2017, Annales Henri Poincaré.

[57]  Martin Hairer,et al.  Algebraic renormalisation of regularity structures , 2016, Inventiones mathematicae.

[58]  V. Rivasseau,et al.  Constructive Tensor Field Theory: The $${T_{4}^{4}}$$T44 Model , 2017, Communications in Mathematical Physics.

[59]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[60]  G. Parisi,et al.  PERTURBATION-THEORY WITHOUT GAUGE FIXING , 1980 .

[61]  Bergfinnur Durhuus,et al.  Three-dimensional simplicial gravity and generalized matrix models , 1990 .

[62]  Martin Hairer,et al.  A theory of regularity structures , 2013, 1303.5113.

[63]  J. Maldacena,et al.  A bound on chaos , 2015, Journal of High Energy Physics.

[64]  V. Rivasseau Tensor Field Theory , 2016 .

[65]  Valentin Bonzom,et al.  Critical behavior of colored tensor models in the large N limit , 2011, 1105.3122.

[66]  V. Rivasseau Constructive matrix theory , 2007, 0706.1224.

[67]  Sylvain Carrozza,et al.  The 1 / N Expansion of the Symmetric Traceless and the Antisymmetric Tensor Models in Rank Three , 2017, Communications in Mathematical Physics.

[68]  Mark A. Iwen,et al.  Extension of PCA to Higher Order Data Structures: An Introduction to Tensors, Tensor Decompositions, and Tensor PCA , 2018, Proceedings of the IEEE.

[69]  G. B. Arous,et al.  Algorithmic thresholds for tensor PCA , 2018, The Annals of Probability.