Arrival and departure impulsive Delta V determination for precessing Mars parking orbits
暂无分享,去创建一个
An attempt is made to develop a method for realistic estimation of the initial LEO mass. The method takes into account the actual geometry between the inbound and outbound hyperbolic asymptotes and the parking orbit, along with precession effects caused by the oblateness of Mars, in calculating the arrival and departure Delta V values. Three mission scenarios alternative to the arbitrarily assumed two tangential periapsis burns are described: a tangential periapsis arrival and an in-plane departure; an in-plane arrival and in-plane departure; and a tangential periapsis arrival and a 3D departure. Results obtained by the method under consideration compared well with a trajectory integration code, where the differences in the initial LEO orbit mass were within one percent, for all three cases. The method is considered to be an ideal tool for preliminary mission design, since it reduces the analysis computation time with minimal loss in accuracy.