Quantum clustering algorithms

By the term "quantization", we refer to the process of using quantum mechanics in order to improve a classical algorithm, usually by making it go faster. In this paper, we initiate the idea of quantizing clustering algorithms by using variations on a celebrated quantum algorithm due to Grover. After having introduced this novel approach to unsupervised learning, we illustrate it with a quantized version of three standard algorithms: divisive clustering, k-medians and an algorithm for the construction of a neighbourhood graph. We obtain a significant speedup compared to the classical approach.

[1]  Lov K. Grover A framework for fast quantum mechanical algorithms , 1997, STOC '98.

[2]  Gilles Brassard,et al.  Machine Learning in a Quantum World , 2006, Canadian AI.

[3]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[4]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[5]  Andris Ambainis,et al.  QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS , 2003, quant-ph/0403120.

[6]  Assaf Gottlieb,et al.  Algorithm for data clustering in pattern recognition problems based on quantum mechanics. , 2001, Physical review letters.

[7]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[8]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[9]  Rocco A. Servedio,et al.  Separating Quantum and Classical Learning , 2001, ICALP.

[10]  Mehdi Mhalla,et al.  Quantum Query Complexity of Some Graph Problems , 2004, SIAM J. Comput..

[11]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[12]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[13]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[14]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[15]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[16]  David Harel,et al.  On Clustering Using Random Walks , 2001, FSTTCS.

[17]  Leonard Pitt,et al.  Sublinear time approximate clustering , 2001, SODA '01.

[18]  Rūsiņš Freivalds,et al.  A survey of quantum learning , 2003 .

[19]  Christoph Dürr,et al.  A Quantum Algorithm for Finding the Minimum , 1996, ArXiv.

[20]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[21]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[22]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[23]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[24]  Felix Wu,et al.  The quantum query complexity of approximating the median and related statistics , 1998, STOC '99.

[25]  C. Small A Survey of Multidimensional Medians , 1990 .

[26]  David Horn,et al.  The Method of Quantum Clustering , 2001, NIPS.