暂无分享,去创建一个
[1] Marc Gerritsma,et al. An Introduction to a Compatible Spectral Discretization Method , 2012 .
[2] Brigitte Maier,et al. Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .
[3] Rolf Schuhmann,et al. 解説 Discrete Electromagnetism by the Finite Integration Technique , 2002 .
[4] S. Christiansen. A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .
[5] B. M. Fulk. MATH , 1992 .
[6] B. Andreianov,et al. On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. , 2012 .
[7] Robert Eymard,et al. Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .
[8] Alexandre Ern,et al. Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.
[9] T. Tarhasaari,et al. Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .
[10] Richard S. Falk,et al. Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..
[11] Annalisa Buffa,et al. Mimetic finite differences for elliptic problems , 2009 .
[12] Ramesh Nallapati,et al. A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows , 2003 .
[13] Anil N. Hirani,et al. Discrete exterior calculus , 2005, math/0508341.
[14] Robert Eymard,et al. A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.
[15] K. Edee,et al. ADVANCES IN IMAGING AND ELECTRON PHYSICS , 2016 .
[16] J. Blair Perot,et al. Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .
[17] Robert Eymard,et al. MAC schemes on triangular Delaunay meshes , 2012 .
[18] R. Eymard,et al. 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .
[19] Ralf Hiptmair,et al. Discrete Hodge-Operators: an Algebraic Perspective , 2001 .
[20] E. Tonti. Finite Formulation of the Electromagnetic Field , 2001 .
[21] Pavel B. Bochev,et al. Principles of Mimetic Discretizations of Differential Operators , 2006 .
[22] Pascal Omnes,et al. A discrete duality finite volume discretization of the vorticity‐velocity‐pressure stokes problem on almost arbitrary two‐dimensional grids , 2015 .
[23] D. Arnold,et al. Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.
[24] J. Blair Perot,et al. Discrete calculus methods for diffusion , 2007, J. Comput. Phys..
[25] Lorenzo Codecasa,et al. Convergence of Electromagnetic Problems Modelled by Discrete Geometric Approach , 2010 .
[26] Christine Bernardi,et al. Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..
[27] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[28] Jean-Claude Nédélec,et al. Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .
[29] V. Girault,et al. Vector potentials in three-dimensional non-smooth domains , 1998 .
[30] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[31] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[32] Marc I. Gerritsma,et al. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..
[33] Alexander Linke,et al. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .
[34] Jérôme Bonelle,et al. Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations , 2014 .
[35] Robert Eymard,et al. On MAC schemes on triangular delaunay meshes, their convergence and application to coupled flow problems , 2014 .
[36] F. Dubois. Une formulation tourbillon-vitesse-pression pour le problème de Stokes , 1992 .
[37] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[38] Lorenzo Codecasa,et al. A new set of basis functions for the discrete geometric approach , 2010, J. Comput. Phys..
[39] Hyam Abboud,et al. A priori and a posteriori estimates for three‐dimensional Stokes equations with nonstandard boundary conditions , 2012 .
[40] James H. Bramble,et al. On variational formulations for the Stokes equations with nonstandard boundary conditions , 1994 .
[41] David Trujillo,et al. Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..
[42] Fernando L. Teixeira,et al. Differential Forms in Lattice Field Theories: An Overview , 2013 .
[43] Claudio Mattiussi,et al. The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems , 2000 .
[44] Gianmarco Manzini,et al. The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes , 2012, SIAM J. Numer. Anal..
[45] Daniele A. Di Pietro,et al. An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..
[46] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.