Analysis of Compatible Discrete Operator Schemes for the Stokes Equations on Polyhedral Meshes

Compatible Discrete Operator schemes preserve basic properties of the continuous model at the discrete level. They combine discrete differential operators that discretize exactly topological laws and discrete Hodge operators that approximate constitutive relations. We devise and analyze two families of such schemes for the Stokes equations in curl formulation, with the pressure degrees of freedom located at either mesh vertices or cells. The schemes ensure local mass and momentum conservation. We prove discrete stability by establishing novel discrete Poincar\'e inequalities. Using commutators related to the consistency error, we derive error estimates with first-order convergence rates for smooth solutions. We analyze two strategies for discretizing the external load, so as to deliver tight error estimates when the external load has a large irrotational or divergence-free part. Finally, numerical results are presented on three-dimensional polyhedral meshes.

[1]  Marc Gerritsma,et al.  An Introduction to a Compatible Spectral Discretization Method , 2012 .

[2]  Brigitte Maier,et al.  Mixed And Hybrid Finite Element Methods Springer Series In Computational Mathematics , 2016 .

[3]  Rolf Schuhmann,et al.  解説 Discrete Electromagnetism by the Finite Integration Technique , 2002 .

[4]  S. Christiansen A CONSTRUCTION OF SPACES OF COMPATIBLE DIFFERENTIAL FORMS ON CELLULAR COMPLEXES , 2008 .

[5]  B. M. Fulk MATH , 1992 .

[6]  B. Andreianov,et al.  On 3D DDFV discretization of gradient and divergence operators. I. Meshing, operators and discrete duality. , 2012 .

[7]  Robert Eymard,et al.  Study of the mixed finite volume method for Stokes and Navier‐Stokes equations , 2009 .

[8]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.

[9]  T. Tarhasaari,et al.  Some realizations of a discrete Hodge operator: a reinterpretation of finite element techniques [for EM field analysis] , 1999 .

[10]  Richard S. Falk,et al.  Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation , 2013, SIAM J. Numer. Anal..

[11]  Annalisa Buffa,et al.  Mimetic finite differences for elliptic problems , 2009 .

[12]  Ramesh Nallapati,et al.  A moving unstructured staggered mesh method for the simulation of incompressible free-surface flows , 2003 .

[13]  Anil N. Hirani,et al.  Discrete exterior calculus , 2005, math/0508341.

[14]  Robert Eymard,et al.  A mixed finite volume scheme for anisotropic diffusion problems on any grid , 2006, Numerische Mathematik.

[15]  K. Edee,et al.  ADVANCES IN IMAGING AND ELECTRON PHYSICS , 2016 .

[16]  J. Blair Perot,et al.  Discrete Conservation Properties of Unstructured Mesh Schemes , 2011 .

[17]  Robert Eymard,et al.  MAC schemes on triangular Delaunay meshes , 2012 .

[18]  R. Eymard,et al.  3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids , 2008 .

[19]  Ralf Hiptmair,et al.  Discrete Hodge-Operators: an Algebraic Perspective , 2001 .

[20]  E. Tonti Finite Formulation of the Electromagnetic Field , 2001 .

[21]  Pavel B. Bochev,et al.  Principles of Mimetic Discretizations of Differential Operators , 2006 .

[22]  Pascal Omnes,et al.  A discrete duality finite volume discretization of the vorticity‐velocity‐pressure stokes problem on almost arbitrary two‐dimensional grids , 2015 .

[23]  D. Arnold,et al.  Finite element exterior calculus: From hodge theory to numerical stability , 2009, 0906.4325.

[24]  J. Blair Perot,et al.  Discrete calculus methods for diffusion , 2007, J. Comput. Phys..

[25]  Lorenzo Codecasa,et al.  Convergence of Electromagnetic Problems Modelled by Discrete Geometric Approach , 2010 .

[26]  Christine Bernardi,et al.  Spectral Discretization of the Vorticity, Velocity, and Pressure Formulation of the Stokes Problem , 2006, SIAM J. Numer. Anal..

[27]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[28]  Jean-Claude Nédélec,et al.  Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .

[29]  V. Girault,et al.  Vector potentials in three-dimensional non-smooth domains , 1998 .

[30]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[31]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[32]  Marc I. Gerritsma,et al.  Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution , 2012, J. Comput. Phys..

[33]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[34]  Jérôme Bonelle,et al.  Compatible discrete operator schemes on polyhedral meshes for elliptic and Stokes equations , 2014 .

[35]  Robert Eymard,et al.  On MAC schemes on triangular delaunay meshes, their convergence and application to coupled flow problems , 2014 .

[36]  F. Dubois Une formulation tourbillon-vitesse-pression pour le problème de Stokes , 1992 .

[37]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[38]  Lorenzo Codecasa,et al.  A new set of basis functions for the discrete geometric approach , 2010, J. Comput. Phys..

[39]  Hyam Abboud,et al.  A priori and a posteriori estimates for three‐dimensional Stokes equations with nonstandard boundary conditions , 2012 .

[40]  James H. Bramble,et al.  On variational formulations for the Stokes equations with nonstandard boundary conditions , 1994 .

[41]  David Trujillo,et al.  Vorticity-velocity-pressure formulation for Stokes problem , 2003, Math. Comput..

[42]  Fernando L. Teixeira,et al.  Differential Forms in Lattice Field Theories: An Overview , 2013 .

[43]  Claudio Mattiussi,et al.  The Finite Volume, Finite Difference, and Finite Elements Methods as Numerical Methods for Physical Field Problems , 2000 .

[44]  Gianmarco Manzini,et al.  The Discrete Duality Finite Volume Method for Stokes Equations on Three-Dimensional Polyhedral Meshes , 2012, SIAM J. Numer. Anal..

[45]  Daniele A. Di Pietro,et al.  An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow , 2014, Math. Comput..

[46]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.