Computing AAlpha, log(A), and Related Matrix Functions by Contour Integrals

New methods are proposed for the numerical evaluation of $f(\mathbf{A})$ or $f(\mathbf{A}) b$, where $f(\mathbf{A})$ is a function such as $\mathbf{A}^{1/2}$ or $\log (\mathbf{A})$ with singularities in $(-\infty,0]$ and $\mathbf{A}$ is a matrix with eigenvalues on or near $(0,\infty)$. The methods are based on combining contour integrals evaluated by the periodic trapezoid rule with conformal maps involving Jacobi elliptic functions. The convergence is geometric, so that the computation of $f(\mathbf{A})b$ is typically reduced to one or two dozen linear system solves, which can be carried out in parallel.

[1]  A. Kennedy Approximation theory for matrices , 2004, hep-lat/0402037.

[2]  Masao Iri,et al.  On a certain quadrature formula , 1987 .

[3]  D. Newman Rational approximation to | x , 1964 .

[4]  Leon M. Hall,et al.  Special Functions , 1998 .

[5]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .

[6]  J. Cooper,et al.  Theory of Approximation , 1960, Mathematical Gazette.

[7]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[8]  George Szekeres,et al.  Numerical evaluation of high-dimensional integrals , 1964 .

[9]  Karl-Georg Steffens The history of approximation theory , 2005 .

[10]  Frank Stenger,et al.  Integration Formulae Based on the Trapezoidal Formula , 1973 .

[11]  J. A. C. Weideman,et al.  Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..

[12]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[13]  H. V. D. Vorst,et al.  Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.

[14]  B. Baillaud Sur le calcul numerique des integrales definies , 1886 .

[15]  G. Golub,et al.  Bounds for the Entries of Matrix Functions with Applications to Preconditioning , 1999 .

[16]  L. Trefethen,et al.  The Carathéodory–Fejér Method for Real Rational Approximation , 1983 .

[17]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[18]  Radakovič The theory of approximation , 1932 .

[19]  F. Stenger Numerical Methods Based on Sinc and Analytic Functions , 1993 .

[20]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[21]  Lloyd N. Trefethen,et al.  Schwarz-Christoffel Mapping , 2002 .

[22]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[23]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[24]  Karl-Georg Steffens The history of approximation theory : from Euler to Bernstein , 2006 .

[25]  Masatake Mori,et al.  Quadrature formulas obtained by variable transformation , 1973 .

[26]  M. Mori Discovery of the Double Exponential Transformation and Its Developments , 2005 .

[27]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[28]  Philip I. Davies,et al.  Computing f (A)b for matrix functions f , 2005 .

[29]  F. Stenger Numerical Methods Based on Whittaker Cardinal, or Sinc Functions , 1981 .

[30]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[31]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[32]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[33]  Tobin A. Driscoll,et al.  Algorithm 843: Improvements to the Schwarz-Christoffel toolbox for MATLAB , 2005, TOMS.