Harmonic parameterization by electrostatics

In this article, we introduce a method to apply ideas from electrostatics to parameterize the open space around an object. By simulating the object as a virtually charged conductor, we can define an object-centric coordinate system which we call Electric Coordinates. It parameterizes the outer space of a reference object in a way analogous to polar coordinates. We also introduce a measure that quantifies the extent to which an object is wrapped by a surface. This measure can be computed as the electric flux through the wrapping surface due to the electric field around the charged conductor. The electrostatic parameters, which comprise the Electric Coordinates and flux, have several applications in computer graphics, including: texturing, morphing, meshing, path planning relative to a target object, mesh parameterization, designing deformable objects, and computing coverage. Our method works for objects of arbitrary geometry and topology, and thus is applicable in a wide variety of scenarios.

[1]  A. van Oosterom,et al.  The Solid Angle of a Plane Triangle , 1983, IEEE Transactions on Biomedical Engineering.

[2]  D. Sattinger,et al.  Calculus on Manifolds , 1986 .

[3]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[4]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[5]  J. Mitani,et al.  Apparent layer operations for the manipulation of deformable objects , 2010, ACM Trans. Graph..

[6]  Tadasu Takuma,et al.  Analytical expressions of potential and electric field generated by a triangular surface charge with a high-order charge density distribution , 2002 .

[7]  Takeo Igarashi,et al.  Interactive Cover Design Considering Physical Constraints , 2009, Comput. Graph. Forum.

[8]  Edmond S. L. Ho,et al.  Spatial relationship preserving character motion adaptation , 2010, ACM Trans. Graph..

[9]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[10]  Daniel Cohen-Or,et al.  To appear in the ACM SIGGRAPH conference proceedings Handle-Aware Isolines for Scalable Shape Editing , 2022 .

[11]  Robert W. Sumner,et al.  OverCoat: an implicit canvas for 3D painting , 2011, ACM Trans. Graph..

[12]  Michael Garland,et al.  Harmonic functions for quadrilateral remeshing of arbitrary manifolds , 2005, Comput. Aided Geom. Des..

[13]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[14]  Hans-Peter Seidel,et al.  A Fast and Simple Stretch-Minimizing Mesh Parameterization , 2004 .

[15]  E. Goto,et al.  Extrapolated surface charge method for capacity calculation of polygons and polyhedra , 1992 .

[16]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[17]  Tao Ju,et al.  Mean value coordinates for closed triangular meshes , 2005, ACM Trans. Graph..

[18]  Kun Zhou,et al.  Deformation Transfer to Multi‐Component Objects , 2010, Comput. Graph. Forum.

[19]  Hans-Peter Seidel,et al.  A fast and simple stretch-minimizing mesh parameterization , 2004, Proceedings Shape Modeling Applications, 2004..

[20]  Takamitsu Matsubara,et al.  Reinforcement learning of clothing assistance with a dual-arm robot , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[21]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[22]  Nazar H. Malik,et al.  A review of the charge simulation method and its applications , 1989 .

[23]  Hugues Hoppe,et al.  Spherical parametrization and remeshing , 2003, ACM Trans. Graph..

[24]  Tadasu Takuma,et al.  Analytic Expressions of Potential and Electric Field Generated by a Triangular Surface Charge with Second-order Charge Density , 2000 .

[25]  Paul M. Thompson,et al.  Genus zero surface conformal mapping and its application to brain surface mapping , 2004, IEEE Transactions on Medical Imaging.

[26]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[27]  Daniel Cohen-Or,et al.  Green Coordinates , 2008, ACM Trans. Graph..

[28]  Ayellet Tal,et al.  Polyhedron realization for shape transformation , 1998, The Visual Computer.

[29]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[30]  Alla Sheffer,et al.  Fundamentals of spherical parameterization for 3D meshes , 2003, ACM Trans. Graph..

[31]  Alla Sheffer,et al.  Mesh parameterization: theory and practice Video files associated with this course are available from the citation page , 2007, SIGGRAPH Courses.

[32]  M. Malek Vector Calculus , 2014 .

[33]  John T. Katsikadelis,et al.  Boundary Elements: Theory and Applications , 2002 .

[34]  Nancy S. Pollard,et al.  Local layering , 2009, SIGGRAPH 2009.

[35]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[36]  Denis Zorin,et al.  Interactive modeling of topologically complex geometric detail , 2004, ACM Trans. Graph..

[37]  Michael M. Kazhdan,et al.  Unconstrained isosurface extraction on arbitrary octrees , 2007, Symposium on Geometry Processing.

[38]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[39]  Taku Komura,et al.  Manipulation of Flexible Objects by Geodesic Control , 2012, Comput. Graph. Forum.

[40]  Robert A. van de Geijn,et al.  High-performance implementation of the level-3 BLAS , 2008, TOMS.

[41]  J. Warren,et al.  Mean value coordinates for closed triangular meshes , 2005, SIGGRAPH 2005.

[42]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[43]  James F. Blinn,et al.  A Generalization of Algebraic Surface Drawing , 1982, TOGS.

[44]  Taku Komura,et al.  Character Motion Synthesis by Topology Coordinates , 2009, Comput. Graph. Forum.

[45]  Oscar Kin-Chung Au,et al.  Handle-aware isolines for scalable shape editing , 2007, SIGGRAPH 2007.

[46]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, SIGGRAPH 2007.