Efficient Computation of the Hausdorff Distance Between Polytopes by Exterior Random Covering
暂无分享,去创建一个
[1] Vicente Feliu,et al. An iterative algorithm for finding a nearest pair of points in two convex subsets of Rn , 2000 .
[2] A. A. Zhigli︠a︡vskiĭ,et al. Theory of Global Random Search , 1991 .
[3] Stefan Schirra,et al. Robustness and Precision Issues in Geometric Computation , 2000, Handbook of Computational Geometry.
[4] Tom Coleman,et al. Numerical Optimization Techniques (Yurij G. Evtushenko) , 1987 .
[5] C. Moreno,et al. Finding the projection on a polytope: An iterative method , 1996 .
[6] Mariette Yvinec,et al. Algorithmic geometry , 1998 .
[7] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[8] J. Boissonnat,et al. Algorithmic Geometry: Frontmatter , 1998 .
[9] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..
[10] Aimo A. Törn,et al. Global Optimization , 1999, Science.
[11] Ketan Mulmuley. Computational Geometry , 1993 .
[12] Vicente Feliú Batlle,et al. Minimum Distance Between the Faces of Two Convex Polyhedra: A Sufficient Condition , 2003, J. Glob. Optim..
[13] Ming C. Lin,et al. Efficient collision detection for animation and robotics , 1993 .
[14] M. Hagedoorn. Pattern matching using similarity measures , 2000 .
[15] Philip Wolfe,et al. Finding the nearest point in A polytope , 1976, Math. Program..
[16] R. Horst,et al. Global Optimization: Deterministic Approaches , 1992 .
[17] Ketan Mulmuley,et al. Computational geometry - an introduction through randomized algorithms , 1993 .
[18] Reiner Lenz,et al. Group Theoretical Methods in Image Processing , 1990, Lecture Notes in Computer Science.
[19] Luc Devroye,et al. Progressive global random search of continuous functions , 1978, Math. Program..
[20] B. LLANAS,et al. Hausdorff Matching and Lipschitz Optimization , 2006, J. Glob. Optim..
[21] H. Alt,et al. Computing the Hausdorff Distance of Geometric Patterns and Shapes , 2003 .
[22] K. Jahn. Effective evaluation of Hausdorff distances for finite unions of hyperrectangles , 1993 .
[23] M. Godau. On the complexity of measuring the similarity between geometric objects in higher dimensions , 1999 .
[24] Heinz H. Bauschke,et al. On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..
[25] R. Kannan,et al. Convex Sets and their Applications , 2006 .
[26] Helmut Alt,et al. Approximate matching of polygonal shapes , 1995, SCG '91.
[27] Helmut Alt,et al. Approximate Matching of Polygonal Shapes (Extended Abstract) , 1991, SCG.
[28] Remco C. Veltkamp,et al. State of the Art in Shape Matching , 2001, Principles of Visual Information Retrieval.
[29] Joseph S. B. Mitchell,et al. Approximate Geometric Pattern Matching Under Rigid Motions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..
[30] Kazuyuki Sekitani,et al. A recursive algorithm for finding the minimum norm point in a polytope and a pair of closest points in two polytopes , 1993, Math. Program..
[31] Rajeev Motwani,et al. Randomized algorithms , 1996, CSUR.
[32] T GoodrichMichael,et al. Approximate Geometric Pattern Matching Under Rigid Motions , 1999 .
[33] P. McMullen. Convex Sets and Their Applications , 1982 .
[34] Michael T. Goodrich,et al. Geometric Pattern Matching Under Euclidean Motion , 1993, Comput. Geom..
[35] Celso C. Ribeiro,et al. A linear time algorithm for the computation of some distance functions between convex polygons , 1991 .
[36] Micha Sharir,et al. The upper envelope of voronoi surfaces and its applications , 1991, SCG '91.
[37] Alon Efrat,et al. Geometric Pattern Matching in d -Dimensional Space , 1995, ESA.
[38] Yurij G. Evtushenko,et al. Numerical Optimization Techniques , 1985 .
[39] A. King,et al. Differential Equations: Group Theoretical Methods , 2003 .