Advanced Signal Processing Techniques for CTG Analysis

The paper aims at presenting and discussing some key points about the analysis of fetal heart rate (FHR) recorded by means of CardioTocography (CTG). Starting from a brief history of CTG computerized analysis, the paper describes how the integration of various computational methods for extracting reliable parameters from FHR variability can help the pre natal diagnosis.

[1]  Giovanni Magenes,et al.  2CTG2: A new system for the antepartum analysis of fetal heart rate , 2007 .

[2]  Maria G. Signorini,et al.  Complexity analysis of the fetal heart rate variability: early identification of severe intrauterine growth-restricted fetuses , 2009, Medical & Biological Engineering & Computing.

[3]  G Schmidt,et al.  New computerized fetal heart rate analysis for surveillance of intrauterine growth restriction , 2011, Prenatal diagnosis.

[4]  Sergio Cerutti,et al.  Linear and nonlinear parameters for the analysisof fetal heart rate signal from cardiotocographic recordings , 2003, IEEE Transactions on Biomedical Engineering.

[5]  Riccardo Bellazzi,et al.  Multivariate analysis based on linear and non-linear FHR parameters for the identification of IUGR fetuses , 2014, 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[6]  J. Richman,et al.  Physiological time-series analysis using approximate entropy and sample entropy. , 2000, American journal of physiology. Heart and circulatory physiology.

[7]  M Tulppo,et al.  Abnormalities in beat to beat complexity of heart rate dynamics in patients with a previous myocardial infarction. , 1996, Journal of the American College of Cardiology.

[8]  M. Malik,et al.  Phase-rectified signal averaging detects quasi-periodicities in non-stationary data , 2006 .

[9]  Sergio Cerutti,et al.  Comparison of entropy-based regularity estimators: application to the fetal heart rate signal for the identification of fetal distress , 2006, IEEE Transactions on Biomedical Engineering.

[10]  S. Pincus Approximate entropy (ApEn) as a complexity measure. , 1995, Chaos.

[11]  Bruce J. West,et al.  Chaos and fractals in human physiology. , 1990, Scientific American.

[12]  Martin Mozina,et al.  Orange: data mining toolbox in python , 2013, J. Mach. Learn. Res..

[13]  J. H. van Bemmel,et al.  Quantitative evaluation of fetal heart rate patterns: I. Processing methods , 1971 .

[14]  J. Haan,et al.  Fetal monitoring by physical methods II. Interpretation of phenomena , 1973 .

[15]  G S Dawes,et al.  System 8000: Computerized antenatal FHR analysis , 1991, Journal of perinatal medicine.

[16]  Madalena Costa,et al.  Multiscale entropy analysis of complex physiologic time series. , 2002, Physical review letters.

[17]  Maria G. Signorini,et al.  Quantitative Assessment of Fetal Well-Being Through CTG Recordings: A New Parameter Based on Phase-Rectified Signal Average , 2013, IEEE Journal of Biomedical and Health Informatics.

[18]  G Magenes,et al.  Comparison between Fetal Heart Rate Standard Parameters and Complexity Indexes for the Identification of Severe Intrauterine Growth Restriction , 2007, Methods of Information in Medicine.

[19]  H. Geijn 2 Developments in CTG analysis , 1996 .

[20]  S Cerutti,et al.  Fetal Heart Rate Variability due to Vibroacoustic Stimulation: Linear and Nonlinear Contribution , 2004, Methods of Information in Medicine.

[21]  Abraham Lempel,et al.  On the Complexity of Finite Sequences , 1976, IEEE Trans. Inf. Theory.

[22]  G. Breithardt,et al.  Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. , 1996 .

[23]  Jürgen Kurths,et al.  Nonlinear Analysis of Physiological Data , 2011 .