Nanohertz gravitational wave astronomy during SKA era: An InPTA perspective
暂无分享,去创建一个
Neelam Dhanda Batra | B. C. Joshi | Indian Institute of Science | P. K. Manoharan | A. Gopakumar | M. Krishnakumar | Keitaro Takahashi | M. Surnis | Y. Maan | A. Naidu | Y. Gupta | Faculty of Computer Science | T. Prabu | A. Pandian | M. Bagchi | National Astronomical Observatories of China | Inter-University Centre for Astronomy | N. U. Ireland | M. F. R. Germany | Raghav Girgaonkar | K. Nobleson | L. Dey | Dhruv Pathak | Stringer India | Nikita Agarwal | S. Desai | S. Hisano | R. Kato | T. Kikunaga | Piyush Marmat | P. Arumugam | Astrophysics India | International Center of Quantum Artificial Intelligence for Science | Indian Institute of Astrophysics - Bangalore - India | Aman K. Srivastava | Sarmistha Banik Avishek Basu | National Centre for Radio Astrophysics India | Tata Institute of Fundamental Research India | Raman Research Institute India | The Institute of Mathetical Sciences India | Homi Bhabha National Institute India | Iit Hyderabad India | University Grants Commission and Ministry of Education. Gover India | Amity University India | Manipal India | UK JodrellBankCentreforAstrophysics | The Indian Institute of Science Education | Research India | Kumamoto University Japan | Technology Kumamoto University Japan | Osaka City University Advanced Mathematical Institute Japan | Universitat Bielefeld Germany | A. Usa | UK UniversityofOxford | Bits Pilani Hyderabad Campus India | Technology Thiruvananthapuram India | S. Susarla | A. Susobhanan | A. Bathula | S. Dandapat | D. Kharbanda | N. Kolhe | J. Singha | P. Rana | P. Tarafdar | A. K. Paladi | India India | Osaka Japan | Indian Institute of Space Science | A. India
[1] A. Gopakumar,et al. Promise of Persistent Multi-Messenger Astronomy with the Blazar OJ 287 , 2021, Galaxies.
[2] Neelam Dhanda Batra,et al. Low-frequency wideband timing of InPTA pulsars observed with the uGMRT , 2021, 2112.06908.
[3] M. Graham,et al. The Unanticipated Phenomenology of the Blazar PKS 2131–021: A Unique Supermassive Black Hole Binary Candidate , 2021, The Astrophysical Journal Letters.
[4] J. Gair,et al. Common-red-signal analysis with 24-yr high-precision timing of the European Pulsar Timing Array: Inferences in the stochastic gravitational-wave background search , 2021, 2110.13184.
[5] H. Middleton,et al. On the Evidence for a Common-spectrum Process in the Search for the Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array , 2021, 2107.12112.
[6] K. Holley-Bockelmann,et al. Gravitational-wave physics and astronomy in the 2020s and 2030s , 2021, Nature Reviews Physics.
[7] B. W. Meyers,et al. Refined Mass and Geometric Measurements of the High-mass PSR J0740+6620 , 2021, The Astrophysical Journal Letters.
[8] A. Gopakumar,et al. Explaining temporal variations in the jet PA of the blazar OJ 287 using its BBH central engine model , 2021, 2103.05274.
[9] R. Manchester,et al. Two years of pulsar observations with the ultra-wide-band receiver on the Parkes radio telescope , 2021, 2101.07373.
[10] Neelam Dhanda Batra,et al. High precision measurements of interstellar dispersion measure with the upgraded GMRT , 2021, Astronomy & Astrophysics.
[11] Stephen R. Taylor,et al. The NANOGrav 11 yr Data Set: Limits on Supermassive Black Hole Binaries in Galaxies within 500 Mpc , 2021, The Astrophysical Journal.
[12] J. van Leeuwen,et al. Fourier domain excision of periodic radio frequency interference , 2020, Astronomy & Astrophysics.
[13] J. Anderson,et al. The impact of solar wind variability on pulsar timing , 2020, Astronomy & Astrophysics.
[14] J. Anderson,et al. Dispersion measure variability for 36 millisecond pulsars at 150 MHz with LOFAR , 2020, Astronomy & Astrophysics.
[15] D. Stinebring,et al. Astrophysics Milestones for Pulsar Timing Array Gravitational-wave Detection , 2020, The Astrophysical Journal Letters.
[16] C. Mingarelli,et al. Multimessenger Pulsar Timing Array Constraints on Supermassive Black Hole Binaries Traced by Periodic Light Curves , 2020, The Astrophysical Journal.
[17] Stephen R. Taylor,et al. The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic Gravitational-wave Background , 2020, The Astrophysical Journal Letters.
[18] M. Mapelli. Binary Black Hole Mergers: Formation and Populations , 2020, Frontiers in Astronomy and Space Sciences.
[19] Bhal Chandra Joshi,et al. pinta: The uGMRT data processing pipeline for the Indian Pulsar Timing Array , 2020, Publications of the Astronomical Society of Australia.
[20] Stephen R. Taylor,et al. The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars , 2020, The Astrophysical Journal Supplement Series.
[21] A. Gopakumar,et al. Spitzer Observations of the Predicted Eddington Flare from Blazar OJ 287 , 2020, The Astrophysical Journal.
[22] J. Dempsey,et al. The Parkes Pulsar Timing Array project: second data release , 2020, Publications of the Astronomical Society of Australia.
[23] Y. N. Liu,et al. Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).
[24] G. Desvignes,et al. The International Pulsar Timing Array: second data release , 2019, Monthly Notices of the Royal Astronomical Society.
[25] A. Gopakumar,et al. The Unique Blazar OJ 287 and Its Massive Binary Black Hole Central Engine , 2019, Universe.
[26] B. A. Boom,et al. Edinburgh Research Explorer First measurement of the Hubble constant from a dark standard siren using the Dark Energy Survey galaxies and the LIGO/Virgo binary-black-hole merger GW170814 , 2018 .
[27] T. Pennucci. Frequency-dependent Template Profiles for High-precision Pulsar Timing , 2018, The Astrophysical Journal.
[28] T. Joseph W. Lazio,et al. The astrophysics of nanohertz gravitational waves , 2018, The Astronomy and Astrophysics Review.
[29] B. C. Joshi,et al. Precision pulsar timing with the ORT and the GMRT and its applications in pulsar astrophysics , 2018 .
[30] F. G. Pinilla,et al. Authenticating the Presence of a Relativistic Massive Black Hole Binary in OJ 287 Using Its General Relativity Centenary Flare: Improved Orbital Parameters , 2018, The Astrophysical Journal.
[31] P. S. Ray,et al. The NANOGrav 11 Year Data Set: Pulsar-timing Constraints on the Stochastic Gravitational-wave Background , 2018, 1801.02617.
[32] D. Stinebring,et al. A Second Chromatic Timing Event of Interstellar Origin toward PSR J1713+0747 , 2017, The Astrophysical Journal.
[33] A. Abbott. Hungary rewards highly cited scientists with bonus grants , 2017, Nature.
[34] Bhal Chandra Joshi,et al. The Upgraded GMRT:Opening New Windows on the Radio Universe , 2017 .
[35] G. Hobbs,et al. Gravitational wave research using pulsar timing arrays , 2017, 1707.01615.
[36] M. Cohen. OJ 287 as a Rotating Helix , 2017 .
[37] R. Karuppusamy,et al. High-precision timing of 42 millisecond pulsars with the European Pulsar Timing Array , 2016, 1602.08511.
[38] D. Stinebring,et al. From spin noise to systematics: Stochastic processes in the first International Pulsar Timing Array data release , 2016, 1602.05570.
[39] D. Stinebring,et al. The International Pulsar Timing Array: First Data Release , 2016, 1602.03640.
[40] R. Karuppusamy,et al. LEAP: the large European array for pulsars , 2015, 1511.06597.
[41] Yashwant Gupta,et al. A real-time coherent dedispersion pipeline for the giant metrewave radio telescope , 2015, 1509.00186.
[42] Arun Naidu,et al. PONDER - A Real time software backend for pulsar and IPS observations at the Ooty Radio Telescope , 2015, 1503.01405.
[43] Scott M. Ransom,et al. PRESTO: PulsaR Exploration and Search TOolkit , 2011 .
[44] Bernard F. Schutz,et al. Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.
[45] R. Manchester,et al. tempo2, a new pulsar timing package ¿ II. The timing model and precision estimates , 2006, astro-ph/0607664.
[46] R. Manchester,et al. TEMPO2, a new pulsar-timing package - I. An overview , 2006, astro-ph/0603381.
[47] R. Manchester,et al. The Australia Telescope National Facility Pulsar Catalogue , 2003, astro-ph/0309219.
[48] Luc Blanchet,et al. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.
[49] J. H. Taylor,et al. Pulsar timing and relativistic gravity , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[50] D. Backer,et al. Constructing a Pulsar Timing Array , 1990 .
[51] R. Hellings,et al. Upper limits on the isotropic gravitational radiation background from pulsar timing analysis , 1983 .
[52] S. Detweiler. Pulsar timing measurements and the search for gravitational waves , 1979 .
[53] V. K. Kapahi,et al. Large Steerable Radio Telescope at Ootacamund, India , 1971 .