A Multilevel Correction Method for Steklov Eigenvalue Problem by Nonconforming Finite Element Methods

In this paper, a multilevel correction scheme is proposed to solve the Steklov eigenvalue problem by nonconforming finite element methods. With this new scheme, the accuracy of eigenpair approximations can be improved after each correction step which only needs to solve a source problem on finer finite element space and an Steklov eigenvalue problem on the coarsest finite element space. This correction scheme can increase the overall efficiency of solving eigenvalue problems by the nonconforming finite element method. Furthermore, as same as the direct eigenvalue solving by nonconforming finite element methods, this multilevel correction method can also produce the lower-bound approximations of the eigenvalues. AMS subject classifications: 65N30, 65N25, 65L15, 65B99

[1]  S. Bergman,et al.  Kernel Functions and Elliptic Differential Equations in Mathematical Physics , 2005 .

[2]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[3]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[4]  John E. Osborn,et al.  APPROXIMATION OF STEKLOV EIGENVALUES OF NON-SELFADJOINT SECOND ORDER ELLIPTIC OPERATORS , 1972 .

[5]  Raytcho D. Lazarov,et al.  Postprocessing and higher order convergence of the mixed finite element approximations of biharmonic eigenvalue problems , 2005 .

[6]  Qun Lin,et al.  Finite element methods : accuracy and improvement = 有限元方法 : 精度及其改善 , 2006 .

[7]  Hai Bi,et al.  A two-grid method of the non-conforming Crouzeix-Raviart element for the Steklov eigenvalue problem , 2011, Appl. Math. Comput..

[8]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[9]  Dorin Bucur,et al.  Asymptotic analysis and scaling of friction parameters , 2006 .

[10]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[11]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[12]  F. Chatelin Spectral approximation of linear operators , 2011 .

[13]  Jinchao Xu,et al.  Local and Parallel Finite Element Algorithms for Eigenvalue Problems , 2002 .

[14]  Lin Qun,et al.  Stokes Eigenvalue Approximations from Below with Nonconforming Mixed Finite Element Methods , 2010 .

[15]  Hehu Xie,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.

[16]  Jinchao Xu,et al.  A Novel Two-Grid Method for Semilinear Elliptic Equations , 1994, SIAM J. Sci. Comput..

[17]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[18]  A. Zhou MULTI-LEVEL ADAPTIVE CORRECTIONS IN FINITE DIMENSIONAL APPROXIMATIONS , 2009 .

[19]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[20]  H. Ahn Vibrations of a pendulum consisting of a bob suspended from a wire: the method of integral equations , 1981 .

[21]  Jinchao Xu A new class of iterative methods for nonselfadjoint or indefinite problems , 1992 .

[22]  Differential operators with spectral parameter incompletely in the boundary conditions , 1990 .

[23]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[24]  Xie He-hu The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .

[25]  Yidu Yang,et al.  A two-grid discretization scheme for the Steklov eigenvalue problem , 2011 .

[26]  Alfredo Bermúdez,et al.  A finite element solution of an added mass formulation for coupled fluid-solid vibrations , 2000, Numerische Mathematik.

[27]  Andrey B. Andreev,et al.  Superconvergence Postprocessing for Eigenvalues , 2002 .

[28]  Xiaozhe Hu,et al.  Corrigendum to: "Acceleration of a two-grid method for eigenvalue problems" , 2011, Math. Comput..

[29]  Yidu Yang,et al.  The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators , 2008 .

[30]  Jinchao Xu,et al.  A two-grid discretization scheme for eigenvalue problems , 2001, Math. Comput..

[31]  Yidu Yang,et al.  Multiscale Discretization Scheme Based on the Rayleigh Quotient Iterative Method for the Steklov Eigenvalue Problem , 2012 .

[32]  Hehu Xie,et al.  Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems , 2009 .

[33]  Hai Bi,et al.  Two-Grid Finite Element Discretization Schemes Based on Shifted-Inverse Power Method for Elliptic Eigenvalue Problems , 2011, SIAM J. Numer. Anal..