Estimaciones para el Teorema de Ceros de Hilbert

[1]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[2]  E. Bombieri The Mordell conjecture revisited , 1990 .

[3]  J. E. Morais,et al.  Straight--Line Programs in Geometric Elimination Theory , 1996, alg-geom/9609005.

[4]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[5]  Joseph Maurice Rojas,et al.  Toric laminations, sparse generalized characteristic polynomials, and a refinement of Hilbert's tenth problem , 1997 .

[6]  P. Philippon,et al.  Sur des hauteurs alternatives III , 1995 .

[7]  J. E. Morais,et al.  When Polynomial Equation Systems Can Be "Solved" Fast? , 1995, AAECC.

[8]  CARLO TRAVERSO,et al.  Hilbert Functions and the Buchberger Algorithm , 1996, J. Symb. Comput..

[9]  J. Neukirch Algebraic Number Theory , 1999 .

[10]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[11]  K. Mahler,et al.  On Some Inequalities for Polynomials in Several Variables , 1962 .

[12]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[13]  Anna Maria Bigatti,et al.  Geometric consequences of extremal behavior in a theorem of Macaulay , 1994 .

[14]  Pascal Koiran Hilbert's Nullstellensatz Is in the Polynomial Hierarchy , 1996, J. Complex..

[15]  János Kollár,et al.  A global lojasiewicz inequality for algebraic varieties , 1992 .

[16]  D. Hilbert,et al.  Ueber die vollen Invariantensysteme , 1893 .

[17]  Alexander L. Chistov,et al.  Polynomial-Time Computation of the Dimension of Algebraic Varieties in Zero-Characteristic , 1996, J. Symb. Comput..

[18]  B. Sturmfels Gröbner bases and convex polytopes , 1995 .

[19]  Carlos A. Berenstein,et al.  Bounds for the degrees in the division problem. , 1990 .

[20]  David Masser,et al.  Fields of large transcendence degree generated by values of elliptic functions , 1983 .

[21]  Teresa Krick,et al.  UNE APPROCHE INFORMATIQUE POUR L'APPROXIMATION DIOPHANTIENNE , 1994 .

[22]  Miles Reid,et al.  Commutative ring theory: Frontmatter , 1987 .

[23]  W. Fulton Introduction to Toric Varieties. , 1993 .

[24]  Teresa Krick,et al.  On Intrinsic Bounds in the Nullstellensatz , 1997, Applicable Algebra in Engineering, Communication and Computing.

[25]  D. H. Lehmer Factorization of Certain Cyclotomic Functions , 1933 .

[26]  Teresa Krick,et al.  A computational method for diophantine approximation , 1996 .

[27]  Marc Giusti,et al.  Lower bounds for diophantine approximations , 1997 .

[28]  I. Shafarevich Basic algebraic geometry , 1974 .

[29]  David Mumford,et al.  What Can Be Computed in Algebraic Geometry , 1993, alg-geom/9304003.

[30]  Michel Laurent,et al.  Hauteur de matrices d'interpolation , 1992 .

[31]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[32]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[33]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[34]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[35]  Marc Giusti,et al.  Polar Varieties, Real Equation Solving, and Data Structures: The Hypersurface Case , 1997, J. Complex..

[36]  D. N. Bernshtein The number of roots of a system of equations , 1975 .

[37]  Gerd Faltings,et al.  Diophantine approximation on abelian varieties , 1991 .

[38]  Bernard Shiffman,et al.  Degree bounds for the division problem in polynomial ideals. , 1989 .

[39]  José Maria Turull Torres,et al.  The space complexity of elimination theory: upper bounds , 1997 .

[40]  Joe W. Harris,et al.  Algebraic Geometry: A First Course , 1995 .

[41]  André Galligo,et al.  Equations for the projective closure and effective Nullstellensatz , 1991, Discret. Appl. Math..

[42]  B. Sturmfels,et al.  Bounds on degrees of projective schemes , 1995 .

[43]  V. Danilov,et al.  THE GEOMETRY OF TORIC VARIETIES , 1978 .

[44]  Martin Sombra Bounds for the Hubert function of polynomial ideals and for the degrees in the Nullstellensatz , 1996 .

[45]  Alicia Dickenstein,et al.  The membership problem for unmixed polynomial ideals is solvable in single exponential time , 1991, Discret. Appl. Math..

[46]  Noaï Fitchas,et al.  Nullstellensatz effectif et Conjecture de Serre (Théorème de Quillen‐Suslin) pour le Calcul Formel , 1990 .

[47]  J. Verschelde,et al.  Homotopies exploiting Newton polytopes for solving sparse polynomial systems , 1994 .

[48]  C. Berenstein,et al.  Recent improvements in the complexity of the effective Nullstellensatz , 1991 .

[49]  David Masser,et al.  Multiplicity estimates for analytic functions II , 1980 .

[50]  M. Elkadi Bornes pour les degrés et les hauteurs dans le problème de division. , 1993 .

[51]  Shou-wu Zhang Positive line bundles on arithmetic surfaces , 1992 .

[52]  Carlos A. Berenstein,et al.  Une formule de Jacobi et ses conséquences , 1991 .

[53]  Jean-Benoît Bost,et al.  Heights of projective varieties and positive Green forms , 1994 .

[54]  Yu. V. Nesterenko,et al.  ESTIMATES FOR THE CHARACTERISTIC FUNCTION OF A PRIME IDEAL , 1985 .

[55]  Joos Heintz,et al.  Corrigendum: Definability and Fast Quantifier Elimination in Algebraically Closed Fields , 1983, Theor. Comput. Sci..

[56]  Uwe Wessels,et al.  On the ampleness of invertible sheaves in complete projective toric varieties , 1991 .