A Clonal Selection Algorithm for Coloring, Hitting Set and Satisfiability Problems

In this keynote paper we present an Immune Algorithm based on the Clonal Selection Principle to explore the combinatorial optimization capability. We consider only two immunological entities, antigens and B cells, three parameters, and the cloning, hypermutation and aging immune operators. The experimental results shows how these immune operators couple the clonal expansion dynamics are sufficient to obtain optimal solutions for graph coloring problem, minimum hitting set problem and satisfiability hard instances, and that the IA designed is very competitive with the best evolutionary algorithms.

[1]  Vincenzo Cutello,et al.  An evolutionary algorithm for the T-constrained variation of Minimum Hitting Set problem , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[2]  Leandro Nunes de Castro,et al.  An Overview of Artificial Immune Systems , 2004 .

[3]  Adam Prügel-Bennett,et al.  Genetic drift in genetic algorithm selection schemes , 1999, IEEE Trans. Evol. Comput..

[4]  Thomas Bäck,et al.  A Superior Evolutionary Algorithm for 3-SAT , 1998, Evolutionary Programming.

[5]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[6]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[7]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[8]  Tong Heng Lee,et al.  Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization , 2001, IEEE Trans. Evol. Comput..

[9]  Robert I. Damper,et al.  Breaking the symmetry of the graph colouring problem with genetic algorithms , 2000 .

[10]  Paolo Dell'Olmo,et al.  Iterative coloring extension of a maximum clique , 2001 .

[11]  Vincenzo Cutello,et al.  A Hybrid Immune Algorithm with Information Gain for the Graph Coloring Problem , 2003, GECCO.

[12]  Michael A. Trick,et al.  A Column Generation Approach for Graph Coloring , 1996, INFORMS J. Comput..

[13]  F. Burnet The clonal selection theory of acquired immunity , 1959 .

[14]  S. Forrest,et al.  Immunology as Information Processing , 2001 .

[15]  Jano I. van Hemert,et al.  Graph Coloring with Adaptive Evolutionary Algorithms , 1998, J. Heuristics.

[16]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[17]  Chak-Kuen Wong,et al.  A new model of simulated evolutionary computation-convergence analysis and specifications , 2001, IEEE Trans. Evol. Comput..

[18]  P E Seiden,et al.  A model for simulating cognate recognition and response in the immune system. , 1992, Journal of theoretical biology.

[19]  S. Motta,et al.  Pattern recognition by primary and secondary response of an Artificial Immune System , 2001 .

[20]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[21]  Jin-Kao Hao,et al.  Hybrid Evolutionary Algorithms for Graph Coloring , 1999, J. Comb. Optim..

[22]  Vincenzo Cutello,et al.  An Immunological Approach to Combinatorial Optimization Problems , 2002, IBERAMIA.

[23]  Zbigniew Michalewicz,et al.  Parameter control in evolutionary algorithms , 1999, IEEE Trans. Evol. Comput..

[24]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  Valmir Carneiro Barbosa,et al.  Two Novel Evolutionary Formulations of the Graph Coloring Problem , 2003, J. Comb. Optim..