Superassembling of Bi2Te3 hierarchical nanostructures for enhanced thermoelectric performance

We describe a facile and one-step pulsed laser deposition (PLD) technique that was utilized for the first time to systematically fabricate a series of innovative Bi2Te3 superassembly-on-epitaxy bi-layer nanostructures, by uniquely coupling the upper self-assembled well-ordered Bi2Te3 hierarchical nanostructures with unusually high surface- and interface-to-volume ratios and a highly electrical conductive epitaxial bottom thin layer on insulated SiO2/Si substrates, as an emerging new class of the most advanced thermoelectric nanomaterials. The optimized power factor of the present superassembly-on-epitaxy films is one to three orders of magnitude higher than that of most Bi2Te3 nanoassemblies defined as the assemblies of nanocrystals, evidently proving the significance and potential of the present new concept and the resulting thermoelectric nanomaterials.

[1]  F. Claeyssens,et al.  Pulsed laser ablation and deposition of thin films. , 2004, Chemical Society reviews.

[2]  Z. Wang,et al.  Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies , 2000 .

[3]  B. Iversen,et al.  Formation and Growth of Bi2Te3 in Biomolecule-Assisted Near-Critical Water: In Situ Synchrotron Radiation Study , 2010 .

[4]  M. Dresselhaus,et al.  Enhanced thermoelectric properties of solution grown Bi2Te(3-x)Se(x) nanoplatelet composites. , 2012, Nano letters.

[5]  J. Noh,et al.  Reduction of Lattice Thermal Conductivity in Single Bi‐Te Core/Shell Nanowires with Rough Interface , 2011, Advanced materials.

[6]  Wei Gao,et al.  Facile synthesis and thermoelectric properties of self-assembled Bi2Te3 one-dimensional nanorod bundles. , 2013, Chemistry.

[7]  Ayusman Sen,et al.  Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. , 2009, Small.

[8]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[9]  J. Sinova,et al.  Holey topological thermoelectrics , 2011, 1107.0006.

[10]  Dong Hyun Lee,et al.  Holey silicon as an efficient thermoelectric material. , 2010, Nano letters.

[11]  Ali Shakouri,et al.  Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19As superlattices , 2006 .

[12]  Xiao-Liang Qi,et al.  Aharonov-Bohm interference in topological insulator nanoribbons. , 2009, Nature materials.

[13]  T. Borca-Tasciuc,et al.  Molecularly Protected Bismuth Telluride Nanoparticles: Microemulsion Synthesis and Thermoelectric Transport Properties , 2006 .

[14]  G. Ramanath,et al.  Low‐Temperature, Template‐Free Synthesis of Single‐Crystal Bismuth Telluride Nanorods , 2006 .

[15]  Gang Chen,et al.  Facile solvothermal synthesis and growth mechanism of flower-like PbTe dendrites assisted by cyclodextrin , 2012 .

[16]  Donald T. Morelli,et al.  Thermopower enhancement in lead telluride nanostructures , 2004 .

[17]  V. Russo,et al.  Raman spectroscopy of Bi‐Te thin films , 2008 .

[18]  Peidong Yang,et al.  Semiconductor nanowires for energy conversion , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[19]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[20]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[21]  M. Francombe Crystal growth and orientation in sputtered films of bismuth telluride , 1964 .

[22]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[23]  K. Nielsch,et al.  Thermoelectric Nanostructures: From Physical Model Systems towards Nanograined Composites , 2011 .

[24]  Abhishek Jain,et al.  Synthesis and Thermoelectric Properties of Thin Film Assemblies of Bismuth Telluride Nanopolyhedra , 2011 .

[25]  Wanlin Guo,et al.  Hydrothermal Synthesis and Thermoelectric Transport Properties of Uniform Single-Crystalline Pearl-Necklace-Shaped PbTe Nanowires , 2008 .

[26]  P. Woias,et al.  Thermoelectric Characterization of Bismuth Telluride Nanowires, Synthesized Via Catalytic Growth and Post‐Annealing , 2013, Advanced materials.

[27]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[28]  Yuan Deng,et al.  Template-free Synthesis and Transport Properties of Bi2Te3 Ordered Nanowire Arrays via a Physical Vapor Process , 2009 .

[29]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[30]  Slobodan Mitrovic,et al.  Reduction of thermal conductivity in phononic nanomesh structures. , 2010, Nature nanotechnology.

[31]  W. Whang,et al.  Smart assembling of multi-scaled functional interfaces in thermoelectric Ga₂Te₃/Te hetero-nanocomposites. , 2014, Nanoscale.

[32]  G. J. Snyder,et al.  Interfaces in bulk thermoelectric materials: A review for Current Opinion in Colloid and Interface Science , 2009 .

[33]  Hsiu-Cheng Chang,et al.  Self-assembled bismuth telluride films with well-aligned zero- to three-dimensional nanoblocks for thermoelectric applications , 2011 .

[34]  N. Ravishankar,et al.  Microsphere Bouquets of Bismuth Telluride Nanoplates: Room-Temperature Synthesis and Thermoelectric Properties , 2010 .

[35]  Y. Kuo,et al.  Great enhancements in the thermoelectric power factor of BiSbTe nanostructured films with well-ordered interfaces. , 2013, Nanoscale.

[36]  Shuyan Song,et al.  Bi2Te3 nanoplates and nanoflowers: Synthesized by hydrothermal process and their enhanced thermoelectric properties , 2012 .

[37]  H. Hng,et al.  Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure. , 2010, ACS nano.