Composite interlaminar fracture toughness imparted by electrospun PPO veils and interleaf particles: a mechanistical comparison

[1]  W. Sampson,et al.  Materials systems for interleave toughening in polymer composites , 2022, Journal of Materials Science.

[2]  Dandan Xing,et al.  On mode I/II interlaminar fracture toughness of double-sided-loop 2D woven laminated composites , 2022, Composite Structures.

[3]  Miaocai Guo Enhancing the Interlaminar Fracture Toughness and AO Resistance of CFRPs by Using Phosphorus-Containing Polymer/PEC-K Bifunctional Film , 2021, Aerospace.

[4]  Yuxi Jia,et al.  Multifunctional nickel‐coated carbon fiber veil for improving both fracture toughness and electrical performance of carbon fiber/epoxy composite laminates , 2021, Polymer Composites.

[5]  R. Benedictus,et al.  Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils , 2020, Composite Structures.

[6]  Y. Qiu,et al.  Interlaminar Fracture Toughness of Carbon-Fiber-Reinforced Epoxy Composites Toughened by Poly(phenylene oxide) Particles , 2020 .

[7]  R. Benedictus,et al.  The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils , 2020, Materials & Design.

[8]  W. Paepegem,et al.  Delamination resistant composites by interleaving bio-based long-chain polyamide nanofibers through optimal control of fiber diameter and fiber morphology , 2020, Composites Science and Technology.

[9]  S. A. Hassan,et al.  Mechanical properties of electrospun nanofiber reinforced/interleaved epoxy matrix composites—A review , 2020 .

[10]  R. Boardman,et al.  Interleaving light veils to minimise the trade-off between mode-I interlaminar fracture toughness and in-plane properties , 2020 .

[11]  Lianjun Wang,et al.  Electrospun Nanofibrous Polyphenylene Oxide Membranes for High-Salinity Water Desalination by Direct Contact Membrane Distillation , 2019, ACS Sustainable Chemistry & Engineering.

[12]  Y. Mai,et al.  Synergetic improvement of interlaminar fracture energy in carbon fiber/epoxy composites with nylon nanofiber/polycaprolactone blend interleaves , 2019, Composites Part B: Engineering.

[13]  Nisrin R. Abdelal,et al.  Improvement of the mode I interlaminar fracture toughness of carbon fiber composite reinforced with electrospun nylon nanofiber , 2019, Composites Part B: Engineering.

[14]  C. Macosko,et al.  Can nanoparticle toughen fiber-reinforced thermosetting polymers? , 2018, Journal of Materials Science.

[15]  Fuzhong Wang,et al.  Improvement of mechanical properties and thermal conductivity of carbon fiber laminated composites through depositing graphene nanoplatelets on fibers , 2018, Journal of Materials Science.

[16]  A. Avci,et al.  Effects of polyvinyl alcohol nanofiber mats on the adhesion strength and fracture toughness of epoxy adhesive joints , 2018 .

[17]  V. Eskizeybek,et al.  CNT-PAN hybrid nanofibrous mat interleaved carbon/epoxy laminates with improved Mode I interlaminar fracture toughness , 2018 .

[18]  V. Michaud,et al.  Electrospun nanofibrous interleaves for improved low velocity impact resistance of glass fibre reinforced composite laminates , 2018 .

[19]  I. Manas‐Zloczower,et al.  Effect of polycarbonate film surface morphology and oxygen plasma treatment on mode I and II fracture toughness of interleaved composite laminates , 2018 .

[20]  Yaqing Liu,et al.  Mechanical properties in glass fiber PVC-foam sandwich structures from different chopped fiber interfacial reinforcement through vacuum-assisted resin transfer molding (VARTM) processing , 2017 .

[21]  A. Zucchelli,et al.  Study on Mode I fatigue behaviour of Nylon 6,6 nanoreinforced CFRP laminates , 2017 .

[22]  Y. Mai,et al.  Delamination toughening of carbon fiber/epoxy laminates by hierarchical carbon nanotube-short carbon fiber interleaves , 2017 .

[23]  W. Paepegem,et al.  Interlaminar toughening of resin transfer molded laminates by electrospun polycaprolactone structures: Effect of the interleave morphology , 2016 .

[24]  Xu Guo,et al.  Edge Delamination and Residual Properties of Drilled Carbon Fiber Composites with and without Short-Aramid-Fiber Interleaf , 2016, Applied Composite Materials.

[25]  Xiaoping Yang,et al.  In-situ toughened CFRP composites by shear-calender orientation and fiber-bundle filtration of PA microparticles at prepreg interlayer , 2016 .

[26]  T. M. Young,et al.  Inclusion of a thermoplastic phase to improve impact and post-impact performances of carbon fibre reinforced thermosetting composites — A review , 2015 .

[27]  W. Paepegem,et al.  Nanofibre bridging as a toughening mechanism in carbon/epoxy composite laminates interleaved with electrospun polyamide nanofibrous veils , 2015 .

[28]  Samit Roy,et al.  Fracture properties of nanographene reinforced EPON 862 thermoset polymer system , 2015 .

[29]  K. Pickering,et al.  Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils , 2015 .

[30]  G. Spadaro,et al.  Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites , 2014 .

[31]  V. Eskizeybek,et al.  The Mode I interlaminar fracture toughness of chemically carbon nanotube grafted glass fabric/epoxy multi-scale composite structures , 2014 .

[32]  H. Fong,et al.  Hybrid multi-scale epoxy composite made of conventional carbon fiber fabrics with interlaminar regions containing electrospun carbon nanofiber mats , 2011 .

[33]  D. Lagoudas,et al.  Investigation of the effect of single wall carbon nanotubes on interlaminar fracture toughness of woven carbon fiber—epoxy composites , 2011 .

[34]  Thomas K. Tsotsis,et al.  Interlayer toughening of composite materials , 2009 .

[35]  K. Schulte,et al.  Mode I and mode II fracture toughness of E-glass non-crimp fabric/carbon nanotube (CNT) modified polymer based composites , 2008 .

[36]  Darrell H. Reneker,et al.  Mechanical properties of composites using ultrafine electrospun fibers , 1999 .

[37]  P. Compston,et al.  Comparison of Interlaminar Fracture Toughness in Unidirectional and Woven Roving Marine Composites , 1998 .

[38]  Ignace Verpoest,et al.  Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results , 1995 .

[39]  J. Hedrick,et al.  Chemical modification of matrix resin networks with engineering thermoplastics: 1. Synthesis, morphology, physical behaviour and toughening mechanisms of poly(arylene ether sulphone) modified epoxy networks , 1991 .