SHARP BOUNDS ON THE DISTRIBUTION OF TREATMENT EFFECTS AND THEIR STATISTICAL INFERENCE

In this paper, we propose nonparametric estimators of sharp bounds on the distribution of treatment effects of a binary treatment and establish their asymptotic distributions. We note the possible failure of the standard bootstrap with the same sample size and apply the fewer-than-n bootstrap to making inferences on these bounds. The finite sample performances of the confidence intervals for the bounds based on normal critical values, the standard bootstrap, and the fewer-than-n bootstrap are investigated via a simulation study. Finally we establish sharp bounds on the treatment effect distribution when covariates are available.

[1]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[2]  Francesca Molinari Partial Identi…cation of Probability Distributions with Misclassi…ed Data , 2004 .

[3]  Joel L. Horowitz,et al.  Identification and Robustness with Contaminated and Corrupted Data , 1995 .

[4]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[5]  James J. Heckman,et al.  Longitudinal Analysis of Labor Market Data , 1985 .

[6]  D. Andrews,et al.  ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP , 2009, Econometric Theory.

[7]  C. Manski Nonparametric Bounds on Treatment Effects , 1989 .

[8]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[9]  James J. Heckman,et al.  Longitudinal Analysis of Labor Market Data , 1985 .

[10]  Charles F. Manski,et al.  The Mixing Problem in Program Evaluation , 1997 .

[11]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2002 .

[12]  C. Manski,et al.  Monotone Instrumental Variables with an Application to the Returns to Schooling , 1998 .

[13]  James J. Heckman,et al.  Estimating treatment effects for discrete outcomes when responses to treatment vary: an application to Norwegian vocational rehabilitation programs , 2005 .

[14]  R. Rohh ALTERNATIVE METHODS FOR EVALUATING THE IMPACT OF INTERVENTIONS An Overview , 2001 .

[15]  Edward Vytlacil,et al.  Treatment Effects for Discrete Outcomes When Responses to Treatment Vary Among Observationally Identical Persons: An Application to Norwegian .. , 2000 .

[16]  D. Andrews Inconsistency of the Bootstrap when a Parameter is on the Boundary of the Parameter Space , 2000 .

[17]  Robert C. Williamson,et al.  Probabilistic arithmetic. I. Numerical methods for calculating convolutions and dependency bounds , 1990, Int. J. Approx. Reason..

[18]  G. Imbens,et al.  Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score , 2000 .

[19]  P. Egger,et al.  On the Distribution of Exchange Rate Regime Treatment Effects on International Trade , 2011 .

[20]  V. Chernozhukov,et al.  Estimation and Confidence Regions for Parameter Sets in Econometric Models , 2007 .

[21]  R. Blundell,et al.  Changes in the Distribution of Male and Female Wages Accounting for Employment Composition Using Bounds , 2004, SSRN Electronic Journal.

[22]  Claudi Alsina,et al.  Some functional equations in the space of uniform distribution functions , 1981 .

[23]  J. Hahn On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects , 1998 .

[24]  C. Manski Monotone Treatment Response , 2009, Identification for Prediction and Decision.

[25]  Sang Soo Park,et al.  Confidence sets for some partially identified parameters , 2010 .

[26]  Joseph P. Romano,et al.  Large Sample Confidence Regions Based on Subsamples under Minimal Assumptions , 1994 .

[27]  J. Heckman,et al.  Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy Evaluation , 2007 .

[28]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[29]  Han Hong,et al.  Parameter Set Inference in a Class of Econometric Models , 2004 .

[30]  T. Kitagawa Inference and decision for set identified parameters using posterior lower and upper probabilities , 2011 .

[31]  Charles F. Manski,et al.  Confidence Intervals for Partially Identified Parameters , 2003 .

[32]  Azeem M. Shaikh,et al.  Inference for identifiable parameters in partially identified econometric models , 2006 .

[33]  A. Tchen Inequalities for distributions with given marginals , 1976 .

[34]  G. D. Makarov Estimates for the Distribution Function of a Sum of Two Random Variables When the Marginal Distributions are Fixed , 1982 .

[35]  D. Rubin,et al.  Assessing Sensitivity to an Unobserved Binary Covariate in an Observational Study with Binary Outcome , 1983 .

[36]  Christopher A. Sims,et al.  Advances in econometrics : Sixth World Congress , 1994 .

[37]  J. Heckman,et al.  Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College Choice , 2003, SSRN Electronic Journal.

[38]  J. Angrist,et al.  Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings , 1999 .

[39]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[40]  E. Vytlacil,et al.  Threshold Crossing Models and Bounds on Treatment Effects: A Nonparametric Analysis , 2005 .

[41]  Robert J. LaLonde,et al.  The Promise of Public Sector-Sponsored Training Programs , 1995 .

[42]  Paul Embrechts,et al.  Using copulae to bound the Value-at-Risk for functions of dependent risks , 2003, Finance Stochastics.

[43]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[44]  J. Heckman,et al.  Longitudinal Analysis of Labor Market Data: Alternative methods for evaluating the impact of interventions , 1985 .

[45]  J. Heckman,et al.  Making the Most out of Programme Evaluations and Social Experiments: Accounting for Heterogeneity in Programme Impacts , 1997 .

[46]  C. Manski Partial Identification of Probability Distributions , 2003 .

[47]  Geert Ridder,et al.  Bounds on Functionals of the Distribution of Treatment Effects , 2008 .

[48]  Sergio Firpo Efficient Semiparametric Estimation of Quantile Treatment Effects , 2004 .

[49]  M. Lechner Earnings and Employment Effects of Continuous Gff-the-Job Training in East Germany After Unification , 1995 .

[50]  Jeffrey A. Smith,et al.  Heterogeneous Impacts in PROGRESA , 2008, SSRN Electronic Journal.

[51]  Jeffrey A. Smith,et al.  Heterogeneous Program Impacts in PROGRESA , 2004 .

[52]  P. Bickel,et al.  On the Choice of m in the m Out of n Bootstrap and its Application to Condence Bounds for Extreme Percentiles y , 2005 .

[53]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[54]  James J. Heckman,et al.  Characterizing Selection Bias Using Experimental Data , 1998 .

[55]  Aaditya Mattoo,et al.  Impact Evaluation of Trade Interventions: Paving the Way , 2011 .

[56]  Donald W. K. Andrews,et al.  Hybrid and Size-Corrected Subsampling Methods , 2007 .

[57]  Mark C. Berger,et al.  Is the Threat of Reemployment Services More Effective than the Services Themselves? Evidence from Random Assignment in the UI System * , 2003 .

[58]  Politis,et al.  [Springer Series in Statistics] Subsampling || Subsampling for Stationary Time Series , 1999 .

[59]  Alberto Abadie,et al.  Instrumental Variables Estimation of Quantile Treatment Effects , 1998 .

[60]  Han Hong,et al.  Semiparametric Efficiency in GMM Models of Nonclassical Measurement Errors, Missing Data and Treatment Effects , 2008 .

[61]  A. V. D. Vaart,et al.  Asymptotic Statistics: Frontmatter , 1998 .

[62]  G. Simons,et al.  Inequalities for Ek(X, Y) when the marginals are fixed , 1976 .

[63]  R. Beran Diagnosing Bootstrap Success , 1997 .

[64]  J. Heckman,et al.  Estimating Distributions of Treatment Effects with an Application to the Returns to Schooling and Measurement of the Effects of Uncertainty on College , 2003 .

[65]  M. J. Frank,et al.  Best-possible bounds for the distribution of a sum — a problem of Kolmogorov , 1987 .

[66]  Myoung‐jae Lee Micro-Econometrics for Policy, Program, and Treatment Effects , 2005 .

[67]  Pau Klein,et al.  San Francisco, California , 2007 .

[68]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[69]  Comparison of two treatments and inconsistency of bootstrap , 2009 .

[70]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[71]  Leigh Tesfatsion,et al.  Stochastic Dominance and the Maximization of Expected Utility , 1976 .

[72]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[73]  J. MacKinnon,et al.  Econometric Theory and Methods , 2003 .

[74]  Stochastic Inequalities,et al.  RANDOM VARIABLES WITH MAXIMUM SUMS , 1982 .

[75]  D. Rubin,et al.  Estimating Outcome Distributions for Compliers in Instrumental Variables Models , 1997 .

[76]  Yanqin Fan,et al.  PARTIAL IDENTIFICATION OF THE DISTRIBUTION OF TREATMENT EFFECTS AND ITS CONFIDENCE SETS , 2009 .

[77]  C. Genest,et al.  Stochastic bounds on sums of dependent risks , 1999 .

[78]  J. Horowitz,et al.  Nonparametric Analysis of Randomized Experiments with Missing Covariate and Outcome Data , 2000 .

[79]  V. Chernozhukov,et al.  An IV Model of Quantile Treatment Effects , 2002 .