Delft University of Technology Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes

The recent advances in the development of heterogeneous catalysts and processes for the direct hydrogenation of CO2 to formate/formic acid, methanol, and dimethyl ether are thoroughly reviewed, with special emphasis on thermodynamics and catalyst design considerations. After introducing the main motivation for the development of such processes, we first summarize the most important aspects of CO2 capture and green routes to produce H2. Once the scene in terms of feedstocks is introduced, we carefully summarize the state of the art in the development of heterogeneous catalysts for these important hydrogenation reactions. Finally, in an attempt to give an order of magnitude regarding CO2 valorization, we critically assess economical aspects of the production of methanol and DME and outline future research and development directions.

[1]  Alyson Gamble Ullmann’s Encyclopedia of Industrial Chemistry , 2019, The Charleston Advisor.

[2]  椿 範立,et al.  Methanol Synthesis , 2018, Catalyst Handbook.

[3]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[4]  F. Kapteijn,et al.  Metal–organic and covalent organic frameworks as single-site catalysts , 2017, Chemical Society reviews.

[5]  A. Urakawa,et al.  CO2 -to-Methanol Hydrogenation on Zirconia-Supported Copper Nanoparticles: Reaction Intermediates and the Role of the Metal-Support Interface. , 2017, Angewandte Chemie.

[6]  M. Beller,et al.  Low-Temperature Hydrogenation of Carbon Dioxide to Methanol with a Homogeneous Cobalt Catalyst. , 2017, Angewandte Chemie.

[7]  G. Hutchings,et al.  Pd/ZnO catalysts for direct CO2 hydrogenation to methanol , 2016 .

[8]  A. Urakawa,et al.  High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol , 2016 .

[9]  E. Hensen,et al.  On the activity of supported Au catalysts in the liquid phase hydrogenation of CO2 to formates , 2016 .

[10]  B. Kraushaar-Czarnetzki,et al.  Influence of the spatial arrangement of catalyst components in the single-stage conversion of synthesis gas to gasoline , 2016 .

[11]  Yi Luo,et al.  Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. , 2016, Angewandte Chemie.

[12]  K. Parkhomenko,et al.  Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: Application to the preparation of catalysts for methanol synthesis from CO2/H2 , 2016 .

[13]  Sungho Yoon,et al.  Recent developments in the catalytic hydrogenation of CO2 to formic acid/formate using heterogeneous catalysts , 2016 .

[14]  F. Kapteijn,et al.  Shaping Covalent Triazine Frameworks for the Hydrogenation of Carbon Dioxide to Formic Acid , 2016 .

[15]  G. Somorjai,et al.  Dissociative Carbon Dioxide Adsorption and Morphological Changes on Cu(100) and Cu(111) at Ambient Pressures. , 2016, Journal of the American Chemical Society.

[16]  Jürgen Klankermayer,et al.  Selective Catalytic Synthesis Using the Combination of Carbon Dioxide and Hydrogen: Catalytic Chess at the Interface of Energy and Chemistry. , 2016, Angewandte Chemie.

[17]  I. Sharp,et al.  Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1. , 2016, Nature materials.

[18]  Thongthai Witoon,et al.  CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases , 2016 .

[19]  I. Chorkendorff,et al.  Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis , 2016, Science.

[20]  Antonio J. Martín,et al.  Indium Oxide as a Superior Catalyst for Methanol Synthesis by CO2 Hydrogenation. , 2016, Angewandte Chemie.

[21]  G. H. Graaf,et al.  Chemical Equilibria in Methanol Synthesis Including the Water–Gas Shift Reaction: A Critical Reassessment , 2016 .

[22]  Liejin Guo,et al.  Effects of reaction time and catalyst on gasification of glucose in supercritical water: Detailed reaction pathway and mechanisms , 2016 .

[23]  Sungho Yoon,et al.  An effective heterogeneous Ir(III) catalyst, immobilized on a heptazine-based organic framework, for the hydrogenation of CO2 to formate , 2016 .

[24]  R. Behm,et al.  Methanol synthesis via CO₂ hydrogenation over a Au/ZnO catalyst: an isotope labelling study on the role of CO in the reaction process. , 2016, Physical chemistry chemical physics : PCCP.

[25]  Tao Zhang,et al.  Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity , 2016 .

[26]  L. Grabow,et al.  Computational Assessment of the Dominant Factors Governing the Mechanism of Methanol Dehydration over H-ZSM-5 with Heterogeneous Aluminum Distribution , 2016 .

[27]  G. Hutchings,et al.  Stable amorphous georgeite as a precursor to a high-activity catalyst , 2016, Nature.

[28]  Johannes J. Meyer,et al.  Modeling of a Methanol Synthesis Reactor for Storage of Renewable Energy and Conversion of CO2 – Comparison of Two Kinetic Models , 2016 .

[29]  J. Díez-Ramírez,et al.  CO2 Hydrogenation to Methanol at Atmospheric Pressure: Influence of the Preparation Method of Pd/ZnO Catalysts , 2016, Catalysis Letters.

[30]  T. Umegaki,et al.  Metallic ruthenium nanoparticles for hydrogenation of supercritical carbon dioxide , 2016 .

[31]  Sena Yang,et al.  Mechanism of the Surface Hydrogen Induced Conversion of CO2 to Methanol at Cu(111) Step Sites , 2016 .

[32]  J. G. Vries,et al.  Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts , 2016 .

[33]  J. S. Lee,et al.  Catalytic CO2 hydrogenation to formic acid over carbon nanotube-graphene supported PdNi alloy catalysts , 2015 .

[34]  J. Bokhoven,et al.  Functionalized Ruthenium–Phosphine Metal–Organic Framework for Continuous Vapor-Phase Dehydrogenation of Formic Acid , 2015 .

[35]  D. Brilman,et al.  A novel condensation reactor for efficient CO2 to methanol conversion for storage of renewable electric energy , 2015 .

[36]  Sungho Yoon,et al.  A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate. , 2015, ChemSusChem.

[37]  E. Catizzone,et al.  Stepwise tuning of metal-oxide and acid sites of CuZnZr-MFI hybrid catalysts for the direct DME synthesis by CO2 hydrogenation , 2015 .

[38]  I. Dincer,et al.  Review and evaluation of hydrogen production methods for better sustainability , 2015 .

[39]  Y. Alhamed,et al.  Studies on Au/Cu–Zn–Al catalyst for methanol synthesis from CO2 , 2015 .

[40]  Etsuko Fujita,et al.  CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction. , 2015, Chemical reviews.

[41]  R. Schlögl,et al.  Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not? , 2015 .

[42]  Haifeng Tian,et al.  Preparation of HZSM-5 membrane packed CuO–ZnO–Al2O3 nanoparticles for catalysing carbon dioxide hydrogenation to dimethyl ether , 2015 .

[43]  Xiao Jiang,et al.  Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol , 2015 .

[44]  Hongfei Lin,et al.  High yield production of formate by hydrogenating CO2 derived ammonium carbamate/carbonate at room temperature , 2015 .

[45]  Hongbing Ji,et al.  Experimental and theoretical study of the intrinsic kinetics for dimethyl ether synthesis from CO2 over Cu–Fe–Zr/HZSM-5 , 2015 .

[46]  M. Willinger,et al.  Formation of a ZnO overlayer in industrial Cu/ZnO/Al2 O3 catalysts induced by strong metal-support interactions. , 2015, Angewandte Chemie.

[47]  M. Nielsen,et al.  Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol. , 2015, Chemical communications.

[48]  L. Pinard,et al.  The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu + ZnO mechanical mixtures , 2015 .

[49]  Xiaoming Guo,et al.  Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method , 2015 .

[50]  A. Seubsai,et al.  Direct synthesis of dimethyl ether from CO2 hydrogenation over Cu–ZnO–ZrO2/SO42−–ZrO2 hybrid catalysts: effects of sulfur-to-zirconia ratios , 2015 .

[51]  K. Parkhomenko,et al.  Study of CuZnMOx oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol , 2015 .

[52]  F. Kapteijn,et al.  Efficient production of hydrogen from formic acid using a covalent triazine framework supported molecular catalyst. , 2015, ChemSusChem.

[53]  Hongfei Lin,et al.  Highly efficient hydrogen storage system based on ammonium bicarbonate/formate redox equilibrium over palladium nanocatalysts. , 2015, ChemSusChem.

[54]  F. Kapteijn,et al.  Structuring catalyst and reactor – an inviting avenue to process intensification , 2015 .

[55]  Zhimin Liu,et al.  A Tröger's base-derived microporous organic polymer: design and applications in CO2/H2 capture and hydrogenation of CO2 to formic acid. , 2015, Chemical communications.

[56]  Jian‐Qiang Wang,et al.  An aqueous rechargeable formate-based hydrogen battery driven by heterogeneous Pd catalysis. , 2014, Angewandte Chemie.

[57]  Jyeshtharaj B. Joshi,et al.  Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies , 2014 .

[58]  Kangjun Wang,et al.  V-modified CuO–ZnO–ZrO2/HZSM-5 catalyst for efficient direct synthesis of DME from CO2 hydrogenation , 2014 .

[59]  Viktor Scherer,et al.  Economic evaluation of pre-combustion CO2-capture in IGCC power plants by porous ceramic membranes , 2014 .

[60]  E. Hensen,et al.  Mechanism of CO2 hydrogenation to formates by homogeneous Ru-PNP pincer catalyst: from a theoretical description to performance optimization , 2014 .

[61]  W. Leitner,et al.  Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium–Triphos catalyst: from mechanistic investigations to multiphase catalysis , 2014, Chemical science.

[62]  V. Srivastava In Situ Generation of Ru Nanoparticles to Catalyze CO2 Hydrogenation to Formic Acid , 2014, Catalysis Letters.

[63]  Ping Liu,et al.  Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2 , 2014, Science.

[64]  Chang Won Yoon,et al.  Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride , 2014 .

[65]  P. Dyson,et al.  Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media , 2014, Nature Communications.

[66]  I. Chorkendorff,et al.  Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. , 2014, Angewandte Chemie.

[67]  E. Hensen,et al.  Highly Efficient Reversible Hydrogenation of Carbon Dioxide to Formates Using a Ruthenium PNP‐Pincer Catalyst , 2014 .

[68]  A. Schaadt,et al.  The Influence of the Precipitation/Ageing Temperature on a Cu/ZnO/ZrO2 Catalyst for Methanol Synthesis from H2 and CO2 , 2014 .

[69]  C. Cannilla,et al.  Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation , 2014 .

[70]  P. Parthasarathy,et al.  Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review , 2014 .

[71]  Yuhan Sun,et al.  Methanol synthesis from CO2 hydrogenation over La–M–Cu–Zn–O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors , 2014 .

[72]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[73]  J. Hicks,et al.  CO2 capture and conversion with a multifunctional polyethyleneimine-tethered iminophosphine iridium catalyst/adsorbent. , 2014, ChemSusChem.

[74]  Gabor A. Somorjai,et al.  Cobalt Particle Size Effects in the Fischer–Tropsch Synthesis and in the Hydrogenation of CO2 Studied with Nanoparticle Model Catalysts on Silica , 2014, Topics in Catalysis.

[75]  S. Kühl,et al.  Cu-based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: a microstructural, thermoanalytical, and in situ XAS study. , 2014, Chemistry.

[76]  F. Kapteijn,et al.  Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from syngas: a review , 2014 .

[77]  Ibram Ganesh,et al.  Conversion of carbon dioxide into methanol – a potential liquid fuel: Fundamental challenges and opportunities (a review) , 2014 .

[78]  I. Dincer,et al.  Comparative assessment of hydrogen production methods from renewable and non-renewable sources , 2014 .

[79]  R. Schlögl,et al.  How to Prepare a Good Cu/ZnO Catalyst or the Role of Solid State Chemistry for the Synthesis of Nanostructured Catalysts , 2013 .

[80]  Hongbing Ji,et al.  Synthesis of Dimethyl Ether from CO2 and H2 Using a Cu–Fe–Zr/HZSM-5 Catalyst System , 2013 .

[81]  K. P. Jong,et al.  Towards ‘greener’ catalyst manufacture: Reduction of wastewater from the preparation of Cu/ZnO/Al2O3 methanol synthesis catalysts , 2013 .

[82]  Chelsea A. Huff,et al.  Catalytic CO2 Hydrogenation to Formate by a Ruthenium Pincer Complex , 2013 .

[83]  M. A. Baltanás,et al.  Performance of ternary Cu–Ga2O3–ZrO2 catalysts in the synthesis of methanol using CO2-rich gas mixtures , 2013 .

[84]  André Bardow,et al.  Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls , 2013 .

[85]  C. Cannilla,et al.  Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation , 2013 .

[86]  G. Trunfio,et al.  How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol , 2013 .

[87]  William F. Schneider,et al.  Catalytic Hydrogenation of CO2 to Formic Acid with Silica‐Tethered Iridium Catalysts , 2013 .

[88]  R. Schlögl,et al.  The role of the oxide component in the development of copper composite catalysts for methanol synthesis. , 2013, Angewandte Chemie.

[89]  Atsushi Urakawa,et al.  CO2 hydrogenation to methanol at pressures up to 950bar , 2013 .

[90]  D. Stolten,et al.  A comprehensive review on PEM water electrolysis , 2013 .

[91]  J. Nørskov,et al.  Methanol to Dimethyl Ether over ZSM-22: A Periodic Density Functional Theory Study , 2013 .

[92]  A. Urakawa,et al.  High pressure plant for heterogeneous catalytic CO2 hydrogenation reactions in a continuous flow microreactor , 2013 .

[93]  Donghai Mei,et al.  Mechanistic studies of methanol synthesis over Cu from CO/CO2/H2/H2O mixtures: The source of C in methanol and the role of water , 2013 .

[94]  Guo-Dong Lin,et al.  Pd/CNT-promoted CuZrO2/HZSM-5 hybrid catalysts for direct synthesis of DME from CO2/H2 , 2013 .

[95]  J. G. V. Bennekom,et al.  Methanol synthesis beyond chemical equilibrium , 2013 .

[96]  R. Schlögl,et al.  The effect of Al-doping on ZnO nanoparticles applied as catalyst support. , 2013, Physical chemistry chemical physics : PCCP.

[97]  Xiao Jiang,et al.  Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO2 hydrogenation for methanol synthesis , 2012 .

[98]  Y. Himeda,et al.  Recent Advances in Transition Metal-Catalysed Homogeneous Hydrogenation of Carbon Dioxide in Aqueous Media , 2012 .

[99]  Hari C. Mantripragada,et al.  The outlook for improved carbon capture technology , 2012 .

[100]  Wei Hsin Chen,et al.  One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity , 2012 .

[101]  J. G. V. Bennekom,et al.  Modeling and Experimental Studies on Phase and Chemical Equilibria in High-Pressure Methanol Synthesis , 2012 .

[102]  A.G.J. van der Ham,et al.  Hydrogenation of carbon dioxide for methanol production , 2012 .

[103]  Q. Li,et al.  The Synthesis and Application of CuO-ZnO/HZSM-5 Catalyst With Core-shell Structure , 2012 .

[104]  W. Wang,et al.  Covalent organic frameworks. , 2012, Chemical Society reviews.

[105]  J. Calvino,et al.  The role of Pd–Ga bimetallic particles in the bifunctional mechanism of selective methanol synthesis via CO2 hydrogenation on a Pd/Ga2O3 catalyst , 2012 .

[106]  G. Laurenczy,et al.  Formic acid as a hydrogen source – recent developments and future trends , 2012 .

[107]  Fangming Jin,et al.  Reduction of formic acid to methanol under hydrothermal conditions in the presence of Cu and Zn. , 2012, Bioresource technology.

[108]  J. Nørskov,et al.  The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts , 2012, Science.

[109]  G. Fachinetti,et al.  Conversion of Syngas into Formic Acid , 2012 .

[110]  Etsuko Fujita,et al.  Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures , 2012, Nature Chemistry.

[111]  Pablo Sanchis,et al.  Hydrogen Production From Water Electrolysis: Current Status and Future Trends , 2012, Proceedings of the IEEE.

[112]  S. Sibener,et al.  CO2 Hydrogenation to Formic Acid on Ni(111) , 2012 .

[113]  Zeng Xu,et al.  Catalytic conversion of formic acid to methanol with Cu and Al under hydrothermal conditions , 2012, BioResources.

[114]  R. Schlögl Chemical Energy Storage , 2012 .

[115]  C. Resta,et al.  Carbon dioxide hydrogenation to formic acid by using a heterogeneous gold catalyst. , 2011, Angewandte Chemie.

[116]  C. Copéret,et al.  Tailored ruthenium-N-heterocyclic carbene hybrid catalytic materials for the hydrogenation of carbon dioxide in the presence of amine. , 2011, ChemSusChem.

[117]  Javier Bilbao,et al.  Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation , 2011 .

[118]  M. A. Baltanás,et al.  CO2 capture via catalytic hydrogenation to methanol: Thermodynamic limit vs. ‘kinetic limit’ , 2011 .

[119]  G. Somorjai,et al.  CO2 Hydrogenation Studies on Co and CoPt Bimetallic Nanoparticles Under Reaction Conditions Using TEM, XPS and NEXAFS , 2011 .

[120]  Jiaguo Yu,et al.  Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. , 2011, Journal of the American Chemical Society.

[121]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[122]  Manos Mavrikakis,et al.  Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation , 2011 .

[123]  M. Neurock,et al.  Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether , 2011 .

[124]  Shengping Wang,et al.  Hydrogenation of CO2 to formic acid on supported ruthenium catalysts , 2011 .

[125]  Wei Wei,et al.  Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in i , 2011 .

[126]  R. Schlögl,et al.  Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/Al2O3 catalysts investigated by titration experiments , 2011 .

[127]  Knowledge-based development of a nitrate-free synthesis route for Cu/ZnO methanol synthesis catalysts via formate precursors. , 2011, Chemical communications.

[128]  E. Selli,et al.  Photocatalytic Hydrogen Production , 2010 .

[129]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[130]  H. Fan,et al.  Preparation of Cu/ZnO/Al2O3 catalyst under microwave irradiation for slurry methanol synthesis , 2010 .

[131]  C. Peden,et al.  Non)formation of Methanol by Direct Hydrogenation of Formate on Copper Catalysts , 2010 .

[132]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[133]  C. H. Bartholomew,et al.  Hydrogen Production and Synthesis Gas Reactions , 2010 .

[134]  Matthias Beller,et al.  State-of-the-art catalysts for hydrogenation of carbon dioxide. , 2010, Angewandte Chemie.

[135]  D. Rooney,et al.  Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts. , 2010, Chemical communications.

[136]  Ping Liu,et al.  Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001). , 2010, Physical chemistry chemical physics : PCCP.

[137]  Liejin Guo,et al.  Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration , 2010 .

[138]  Dongke Zhang,et al.  Recent progress in alkaline water electrolysis for hydrogen production and applications , 2010 .

[139]  D. Yang,et al.  The Importance of the Aging Time to Prepare Cu/ZnO/Al2O3 Catalyst with High Surface Area in Methanol Synthesis , 2010 .

[140]  M. Behrens,et al.  Structural Effects of Cu/Zn Substitution in the Malachite–Rosasite System , 2010 .

[141]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[142]  M. Behrens Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts , 2009 .

[143]  M. Yamashita,et al.  Catalytic hydrogenation of carbon dioxide using Ir(III)-pincer complexes. , 2009, Journal of the American Chemical Society.

[144]  S. Collins,et al.  Methanol synthesis from CO2/H2 using Ga2O3–Pd/silica catalysts: Kinetic modeling , 2009 .

[145]  K. Fujita,et al.  Homogeneous catalytic system for reversible dehydrogenation-hydrogenation reactions of nitrogen heterocycles with reversible interconversion of catalytic species. , 2009, Journal of the American Chemical Society.

[146]  Xiaoming Guo,et al.  Dimethyl ether synthesis via CO2 hydrogenation over CuO-TiO2-ZrO2/HZSM-5 bifunctional catalysts , 2009 .

[147]  G. Bonura,et al.  Basic evidences for methanol-synthesis catalyst design , 2009 .

[148]  Krijn P. de Jong,et al.  Synthesis of Solid Catalysts , 2009 .

[149]  R. Schlögl,et al.  Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture , 2009 .

[150]  Jianli Hu,et al.  An overview of hydrogen production technologies , 2009 .

[151]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[152]  G. Italiano,et al.  Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH , 2008 .

[153]  Lijin Xu,et al.  Air-stable and phosphine-free iridium catalysts for highly enantioselective hydrogenation of quinoline derivatives. , 2008, Organic letters.

[154]  F. Schüth,et al.  Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al2O3 catalysts for methanol synthesis , 2008 .

[155]  C. Bae,et al.  The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: A review , 2008 .

[156]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[157]  B. Han,et al.  Hydrogenation of carbon dioxide is promoted by a task-specific ionic liquid. , 2008, Angewandte Chemie.

[158]  A. Basile,et al.  A theoretical analysis of methanol synthesis from CO2 and H2 in a ceramic membrane reactor , 2007 .

[159]  Robert Schlögl,et al.  Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al(2)O(3) catalysts for methanol synthesis. , 2007, Angewandte Chemie.

[160]  A. Urakawa,et al.  Towards a rational design of ruthenium CO2 hydrogenation catalysts by Ab initio metadynamics. , 2007, Chemistry.

[161]  Riitta L. Keiski,et al.  The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2 , 2007 .

[162]  Francesco Frusteri,et al.  Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol , 2007 .

[163]  J. M. Arandes,et al.  Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO−ZnO−Al2O3/γ-Al2O3 Catalyst , 2007 .

[164]  Atsushi Urakawa,et al.  Carbon dioxide hydrogenation catalyzed by a ruthenium dihydride: a DFT and high-pressure spectroscopic investigation. , 2007, Chemistry.

[165]  Frank T. Princiotta,et al.  Global climate change - the technology challenge , 2007 .

[166]  S. Fukuzumi,et al.  Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step. , 2006, Dalton transactions.

[167]  K. Waugh,et al.  On the mechanism of methanol synthesis and the water-gas shift reaction on ZnO , 2006 .

[168]  Xiaoming Zheng,et al.  MCM-41 Bound Ruthenium Complex as Heterogeneous Catalyst for Hydrogenation I: Effect of Support, Ligand and Solvent on the Catalyst Performance , 2006 .

[169]  K. Sumathy,et al.  AN OVERVIEW OF HYDROGEN PRODUCTION FROM BIOMASS , 2006 .

[170]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[171]  L. H. Liu,et al.  CO2 reduction using hydrothermal method for the selective formation of organic compounds , 2006 .

[172]  Yisheng Tan,et al.  A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO2 Hydrogenation , 2006 .

[173]  J. Grunwaldt,et al.  Evaluation of strategies for the immobilization of bidentate ruthenium–phosphine complexes used for the reductive amination of carbon dioxide , 2005 .

[174]  Philip G. Jessop,et al.  Recent advances in the homogeneous hydrogenation of carbon dioxide , 2004 .

[175]  Christopher J. Koroneos,et al.  Life cycle assessment of hydrogen fuel production processes , 2004 .

[176]  Xiaoming Zheng,et al.  Silica immobilized ruthenium catalyst used for carbon dioxide hydrogenation to formic acid (I): the effect of functionalizing group and additive on the catalyst performance , 2004 .

[177]  S. Collins,et al.  An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3 , 2004 .

[178]  R. Schlögl,et al.  Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates. , 2003, Chemistry.

[179]  V. Ostrovskii Mechanisms of methanol synthesis from hydrogen and carbon oxides at Cu–Zn-containing catalysts in the context of some fundamental problems of heterogeneous catalysis , 2002 .

[180]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[181]  Young‐Kwon Park,et al.  CO2 hydrogenation over copper-based hybrid catalysts for the synthesis of oxygenates , 2002 .

[182]  S. Stucki,et al.  Verification of the membrane reactor concept for the methanol synthesis , 2001 .

[183]  Martyn V. Twigg,et al.  Deactivation of supported copper metal catalysts for hydrogenation reactions , 2001 .

[184]  Gongshin Qi,et al.  DME synthesis from carbon dioxide and hydrogen over Cu–Mo/HZSM-5 , 2001 .

[185]  Junji Nakamura,et al.  The role of ZnO in Cu/ZnO methanol synthesis catalysts — morphology effect or active site model? , 2001 .

[186]  Pamela L. Spath,et al.  Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming , 2000 .

[187]  A. Baiker,et al.  Silica xerogels containing bidentate phosphine ruthenium complexes: textural properties and catalytic behaviour in the synthesis of N,N-dimethylformamide from carbon dioxide , 2000 .

[188]  Ho-Suk Choi,et al.  Thermodynamic investigation of methanol and dimethyl ether synthesis from CO2 Hydrogenation , 2000 .

[189]  S. Ogo,et al.  pH-Dependent Transfer Hydrogenation of Water-Soluble Carbonyl Compounds with [Cp*IrIII(H2O)3]2+ (Cp* = η5-C5Me5) as a Catalyst Precursor and HCOONa as a Hydrogen Donor in Water , 1999 .

[190]  A. Porcheddu,et al.  Mild Reduction of Carboxylic Acids to Alcohols Using Cyanuric Chloride and Sodium Borohydride , 1999 .

[191]  Michael Stöcker,et al.  Methanol-to-hydrocarbons: catalytic materials and their behavior 1 Dedicated to my wife Wencke Ophau , 1999 .

[192]  Sung-Hwan Han,et al.  Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process) , 1999 .

[193]  P. Jessop,et al.  Homogeneous catalysis in supercritical fluids. , 1999, Science.

[194]  B. Gaudernack,et al.  Hydrogen from natural gas without release of CO2 to the atmosphere , 1998 .

[195]  R. Prins,et al.  Basic Metal Oxides as Cocatalysts for Cu/SiO2Catalysts in the Conversion of Synthesis Gas to Methanol , 1998 .

[196]  M. Payne,et al.  In Situ Study of Reactive Intermediates of Methanol in Zeolites from First Principles Calculations , 1997 .

[197]  S. Blaszkowski,et al.  Theoretical Study of the Mechanism of Surface Methoxy and Dimethyl Ether Formation from Methanol Catalyzed by Zeolitic Protons , 1997 .

[198]  D. Wayne Goodman,et al.  Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts , 1997 .

[199]  S. Blaszkowski,et al.  The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons , 1996 .

[200]  T. Fujitani,et al.  The role of ZnO in Cu/ZnO methanol synthesis catalysts , 1996 .

[201]  P. Jessop,et al.  HOMOGENEOUS CATALYSIS IN SUPERCRITICAL FLUIDS : HYDROGENATION OF SUPERCRITICAL CARBON DIOXIDE TO FORMIC ACID, ALKYL FORMATES, AND FORMAMIDES , 1996 .

[202]  W. Leitner Carbon Dioxide as a Raw Material: The Synthesis of Formic Acid and Its Derivatives from CO2 , 1995 .

[203]  T. Fujitani,et al.  Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen , 1995 .

[204]  Ryoji Noyori,et al.  Homogeneous Hydrogenation of Carbon Dioxide , 1995 .

[205]  P. Jessop,et al.  Homogeneous catalytic hydrogenation of supercritical carbon dioxide , 1994, Nature.

[206]  J. Lunsford,et al.  The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites , 1993 .

[207]  Rinaldo S. Schiffino,et al.  A mechanistic study of the methanol dehydration reaction on .gamma.-alumina catalyst , 1993 .

[208]  J. Dubois,et al.  Conversion of CO2 to dimethylether and methanol over hybrid catalysts , 1992 .

[209]  M. Scurrell,et al.  Conversion of synthesis gas to dimethyl ether over bifunctional catalytic systems , 1991 .

[210]  K. C. Waugh,et al.  Synthesis of Methanol. Part 1. Catalysts and Kinetics , 1988 .

[211]  G. Chinchen,et al.  Mechanism of methanol synthesis from CO2/CO/H2 mixtures over copper/zinc oxide/alumina catalysts: use of14C-labelled reactants , 1987 .

[212]  C. Stalder,et al.  Supported palladium catalysts for the reduction of sodium bicarbonate to sodium formate in aqueous solution at room temperature and one atmosphere of hydrogen , 1983 .

[213]  Karsten Pedersen,et al.  Infrared and temperature-programmed desorption study of the acidic properties of ZSM-5-type zeolites , 1981 .

[214]  R. Madix,et al.  The selective oxidation of CH3OH to H2CO on a copper(110) catalyst , 1978 .

[215]  Y. Inoue,et al.  CATALYTIC FIXATION OF CARBON DIOXIDE TO FORMIC ACID BY TRANSITION-METAL COMPLEXES UNDER MILD CONDITIONS , 1976 .

[216]  Mark W. Farlow,et al.  The Hydrogenation of Carbon Dioxide and a Correction of the Reported Synthesis of Urethans , 1935 .

[217]  van der Vlugt,et al.  UvA-DARE (Digital Academic Repository) Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst , 2016 .

[218]  A. Singh,et al.  Hydrogen energy future with formic acid: a renewable chemical hydrogen storage system , 2016 .

[219]  Zhancheng Guo,et al.  The intensification technologies to water electrolysis for hydrogen production - A review , 2014 .

[220]  Atsushi Urakawa,et al.  Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products , 2014 .

[221]  M. Arai,et al.  Transformation and Utilization of Carbon Dioxide , 2014 .

[222]  G. Trunfio,et al.  Latest Advances in the Catalytic Hydrogenation of Carbon Dioxide to Methanol/Dimethylether , 2014 .

[223]  王华,et al.  Dimethyl ether synthesis from CO2 hydrogenation on La-modified CuO-ZnO-Al2O3/HZSM-5 bifunctional catalysts , 2013 .

[224]  I. Dincer Green methods for hydrogen production , 2012 .

[225]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[226]  阎子峰,et al.  Role of Nanosized Zirconia on the Properties of Cu/Ga2O3/ZrO2 Catalysts for Methanol Synthesis , 2006 .

[227]  Jiyuan Wang,et al.  Al 2 O 3 Effect on the Catalytic Activity of Cu-ZnO-Al 2 O 3-SiO 2 Catalysts for Dimethyl Ether Synthesis from CO 2 Hydrogenation , 2005 .

[228]  费金华,et al.  Silica Immobilized Ruthenium Catalyst for Formic Acid Synthesis from Supercritical Carbon Dioxide Hydrogenation II: Effect of Reaction Conditions on the Catalyst Performance , 2005 .

[229]  M. Mann,et al.  Life Cycle Assessment of Renewable Hydrogen Production via Wind/Electrolysis , 2004 .

[230]  Ge Qing NEW BIFUNCTIONAL CATALYST FOR DIRECTSYNTHESIS OF DIMETHYL ETHER , 1999 .

[231]  A. Baiker,et al.  A mesoporous ruthenium silica hybrid aerogel with outstanding catalytic properties in the synthesis of N,N-diethylformamide from CO2, H2 and diethylamine , 1999 .

[232]  G. Öhlmann,et al.  Handbook of Heterogeneous Catalysis , 1999 .

[233]  G. Laurenczy,et al.  Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions—a novel possibility of carbon dioxide activation† , 1999 .

[234]  A. Wokaun,et al.  CO2 hydrogenation over metal/zirconia catalysts , 1999 .

[235]  K. Jun,et al.  The $CO_{2}$ Hydrogenation toward the Mixture of Methanol and Dimethyl Ether: Investigation of Hybrid Catalysts , 1998 .

[236]  A. Baiker,et al.  Highly active ruthenium complexes with bidentate phosphine ligandsfor the solvent-free catalytic synthesis of N,N-dimethylformamideand methyl formate , 1997 .

[237]  G. Froment,et al.  A Steady-State Kinetic Model for Methanol Synthesis and the Water Gas Shift Reaction on a Commercial Cu / ZnO / Al 2 O 3 Catalyst , 1996 .

[238]  Eize Stamhuis,et al.  ON CHEMICAL-EQUILIBRIA IN METHANOL SYNTHESIS , 1990 .

[239]  E. Stamhuis,et al.  Kinetics of low-pressure methanol synthesis , 1988 .

[240]  K. Fujimoto,et al.  Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite , 1987 .

[241]  K. C. Waugh,et al.  The measurement of copper surface areas by reactive frontal chromatography , 1987 .

[242]  K. C. Waugh,et al.  The chemical state of copper during methanol synthesis , 1986 .

[243]  T. Onishi,et al.  Selective hydrogenation of carbon monoxide on palladium catalysts , 1981 .

[244]  M. Ichikawa,et al.  Formation of dimethyl ether from hydrogen and carbon dioxide over a graphite–PdCl2–Na catalyst , 1972 .

[245]  G. Bredig,et al.  Katalytische Synthese der Ameisensäure unter Druck , 1914 .