Experimental exploration of five-qubit quantum error-correcting code with superconducting qubits

Abstract Quantum error correction is an essential ingredient for universal quantum computing. Despite tremendous experimental efforts in the study of quantum error correction, to date, there has been no demonstration in the realisation of universal quantum error-correcting code, with the subsequent verification of all key features including the identification of an arbitrary physical error, the capability for transversal manipulation of the logical state and state decoding. To address this challenge, we experimentally realise the [5, 1, 3] code, the so-called smallest perfect code that permits corrections of generic single-qubit errors. In the experiment, having optimised the encoding circuit, we employ an array of superconducting qubits to realise the [5, 1, 3] code for several typical logical states including the magic state, an indispensable resource for realising non-Clifford gates. The encoded states are prepared with an average fidelity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$57.1(3)\%$\end{document} while with a high fidelity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$98.6(1)\%$\end{document} in the code space. Then, the arbitrary single-qubit errors introduced manually are identified by measuring the stabilisers. We further implement logical Pauli operations with a fidelity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$97.2(2)\%$\end{document} within the code space. Finally, we realise the decoding circuit and recover the input state with an overall fidelity of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$74.5(6)\%$\end{document}, in total with 92 gates. Our work demonstrates each key aspect of the [5, 1, 3] code and verifies the viability of experimental realisation of quantum error-correcting codes with superconducting qubits.

[1]  L. Frunzio,et al.  Quantum error correction of a qubit encoded in grid states of an oscillator , 2019, Nature.

[2]  Franco Nori,et al.  Strongly correlated quantum walks with a 12-qubit superconducting processor , 2019, Science.

[3]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[4]  James R. Wootton,et al.  Repetition code of 15 qubits , 2017, 1709.00990.

[5]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[6]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[7]  M. A. Rol,et al.  Repeated quantum error correction on a continuously encoded qubit by real-time feedback , 2015, Nature Communications.

[8]  R. Barends,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2014, Nature.

[9]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[10]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[11]  M. S. Tame,et al.  Experimental demonstration of a graph state quantum error-correction code , 2014, Nature Communications.

[12]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[13]  J. Martinis,et al.  Fast adiabatic qubit gates using only σ z control , 2014, 1402.5467.

[14]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[15]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[16]  R. Barends,et al.  Coherent Josephson qubit suitable for scalable quantum integrated circuits. , 2013, Physical review letters.

[17]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[18]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[19]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[20]  Erik Lucero,et al.  Reduced phase error through optimized control of a superconducting qubit , 2010, 1007.1690.

[21]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[22]  Jian-Wei Pan,et al.  Experimental quantum coding against qubit loss error , 2008, Proceedings of the National Academy of Sciences.

[23]  J. Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2005, Quantum Inf. Comput..

[24]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[25]  E. Knill Quantum computing with realistically noisy devices , 2004, Nature.

[26]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[27]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[28]  I. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1996, quant-ph/9610001.

[29]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[30]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[31]  Laflamme,et al.  Perfect Quantum Error Correction Code , 1996, quant-ph/9602019.

[32]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.