Wind-driven advection across temperature gradients enhances iron-induced phytoplankton blooms in the Antarctic Polar Front

[1]  R. Morrow,et al.  Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability , 2020, Nature communications.

[2]  P. Boyd,et al.  Iron Availability Influences the Tolerance of Southern Ocean Phytoplankton to Warming and Elevated Irradiance , 2019, Front. Mar. Sci..

[3]  B. Jena,et al.  Iron-Stimulated Phytoplankton Blooms in the Southern Ocean: a Brief Review , 2019, Remote Sensing in Earth Systems Sciences.

[4]  P. Boyd Physiology and iron modulate diverse responses of diatoms to a warming Southern Ocean , 2019, Nature Climate Change.

[5]  D. Munday,et al.  Mean, Variability, and Trend of Southern Ocean Wind Stress: Role of Wind Fluctuations , 2018 .

[6]  L. Talley,et al.  Spiraling pathways of global deep waters to the surface of the Southern Ocean , 2017, Nature Communications.

[7]  S. Agustí,et al.  Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean , 2017, Front. Mar. Sci..

[8]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[9]  Fei-xue Fu,et al.  A comparative study of iron and temperature interactive effects on diatoms and Phaeocystis antarctica from the Ross Sea, Antarctica , 2016 .

[10]  N. Lovenduski,et al.  Mapping the Antarctic Polar Front: weekly realizations from 2002 to 2014 , 2016 .

[11]  S. Litvin,et al.  Ocean fronts drive marine fishery production and biogeochemical cycling , 2015, Proceedings of the National Academy of Sciences.

[12]  P. Laan,et al.  Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake , 2014 .

[13]  Robert M. Graham,et al.  The Dynamical Subtropical Front , 2013 .

[14]  R. Morrow,et al.  A new estimate of the global 3D geostrophic ocean circulation based on satellite data and in-situ measurements , 2012 .

[15]  Taka Ito,et al.  Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow , 2010, Nature.

[16]  M. Long,et al.  Synergistic effects of iron and temperature on Antarctic plankton assemblages , 2009 .

[17]  Peter Cornillon,et al.  Fronts in Large Marine Ecosystems , 2009 .

[18]  M. Kahru,et al.  Eddies enhance biological production in the Weddell‐Scotia Confluence of the Southern Ocean , 2007 .

[19]  E. Boyle,et al.  Mesoscale Iron Enrichment Experiments 1993-2005: Synthesis and Future Directions , 2007, Science.

[20]  C. Lange,et al.  Distribution of spring phytoplankton (mainly diatoms) in the upper 50 m of the Southwestern Atlantic Ocean (30–61°S) , 2006 .

[21]  Janet Sprintall,et al.  Location of the Antarctic Polar Front from AMSR-E Satellite Sea Surface Temperature Measurements , 2006 .

[22]  Ulf Riebesell,et al.  Synthesis of iron fertilization experiments: From the iron age in the age of enlightenment , 2005 .

[23]  H. Marchant,et al.  Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae , 2004, Journal of Applied Phycology.

[24]  K. Daly,et al.  Phytoplankton Assemblage Structure and Primary Productivity Along 170° W in the South Pacific Ocean , 2003 .

[25]  C. Wiencke,et al.  Effect of Irradiance and Temperature on Photosynthesis and Growth of Two Antarctic Benthic Diatoms, Gyrosigma subsalinum and Odontella litigiosa , 2003 .

[26]  S. J. Tanner,et al.  Phytoplankton growth and biological response to iron and zinc addition in the Ross Sea and Antarctic Circumpolar Current along 170°W , 2003 .

[27]  A. Brierley,et al.  The Southern Antarctic Circumpolar Current Front: physical and biological coupling at South Georgia , 2002 .

[28]  David S. Reay,et al.  Regulation by low temperature of phytoplankton growth and nutrient uptake in the Southern Ocean , 2001 .

[29]  R. Bidigare,et al.  Initiation of the spring phytoplankton increase in the Antarctic Polar Front Zone at 170°W , 2001 .

[30]  J. Barth,et al.  Mesoscale physical and bio‐optical structure of the Antarctic Polar Front near 170°W during austral spring , 2001 .

[31]  P. Croot,et al.  Growth rates of large and small Southern Ocean diatoms in relation to availability o iron in natural seawater , 2001 .

[32]  R. Hallberg,et al.  On the Relationship of the Circumpolar Current to Southern Hemisphere Winds in Coarse-Resolution Ocean Models , 2000 .

[33]  P. Abreu,et al.  Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30–62°S) , 2000 .

[34]  J. Richman,et al.  SeaWiFS satellite ocean color data from the Southern Ocean , 1999 .

[35]  M. Fieux,et al.  Thermohaline structure of the Antarctic Surface Water/Winter Water in the Indian sector of the Southern Ocean , 1998 .

[36]  A. Gordon,et al.  Southern Ocean fronts from the Greenwich Meridian to Tasmania , 1996 .

[37]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[38]  V. Smetácek,et al.  Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean , 1995, Nature.

[39]  K. Timmermans,et al.  Iron-mediated effects on nitrate reductase in marine phytoplankton , 1994 .

[40]  K. Banse Rates of phytoplankton cell division in the field and in iron enrichment experiments , 1991 .

[41]  L. Brand Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production , 1991 .

[42]  B. Mitchell,et al.  Light limitation of phytoplankton biomass and macronutrient utilization in the Southern Ocean , 1991 .

[43]  W. Sunda,et al.  Low iron requirement for growth in oceanic phytoplankton , 1991, Nature.

[44]  K. Trenberth,et al.  The mean annual cycle in global ocean wind stress , 1990 .

[45]  M. Fiala,et al.  Light-temperature interactions on the growth of Antarctic diatoms , 1990, Polar Biology.

[46]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in Antarctic waters , 1990 .

[47]  A. Mortain-Bertrand Effects of light fluctuations on the growth and productivity of Antarctic diatoms in culture , 1989, Polar Biology.

[48]  R. Peterson,et al.  Volume Transport of the Antarctic Circumpolar Current from Bottom Pressure Measurements , 1985 .

[49]  G. Jacques,et al.  Some ecophysiological aspects of the Antarctic phytoplankton , 1983, Polar Biology.

[50]  A. Neori,et al.  Effect of temperature on rate of photosynthesis in Antarctic phytoplankton , 1982, Polar Biology.

[51]  W. Large,et al.  Open Ocean Momentum Flux Measurements in Moderate to Strong Winds , 1981 .

[52]  D. Chambers,et al.  Recent trends in the Southern Ocean eddy field , 2015 .

[53]  B. Ahrens,et al.  Regional Climate Projections , 2015 .

[54]  A. Piola,et al.  Biology of Fronts , 2015 .

[55]  Z. Dubinsky,et al.  Effects of temperature and day length on the mass balance of Antarctic phytoplankton , 2004, Polar Biology.

[56]  V. Smetácek,et al.  Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front , 2002 .

[57]  J. Richman,et al.  Meanders in the Antarctic Polar Frontal Zone and their impact on phytoplankton , 2001 .

[58]  V. Smetácek,et al.  Spring development of phytoplankton biomass and composition in major water masses of the Atlantic sector of the Southern Ocean , 1997 .

[59]  V. Smetácek,et al.  Ecology and biogeochemistry of the Antarctic Circumpolar Current during austral spring a summary of Southern Ocean JGOFS cruise ANT X/6 of R. V. Polarstern , 1997 .

[60]  F. Brandini,et al.  The influence of light and temperature on carbon-specific DMS release by cultures of Phaeocystis antarctica and three antarctic diatoms , 1994 .

[61]  N. Hoepffner Strategies d'adaptation photosynthetique chez des diatomees des I'Ocean Antarctique: variations du nombre et de la talile des unites photosynthetiques , 1984 .