A Factor-Analytic Probit Model for Representing the Market Structure in Panel Data

Internal market structure analysis infers both brand attributes and consumer preferences for those attributes from preference or choice data. The authors exploit a new method for estimating probit models from panel data to infer market structures that can be displayed in few dimensions, even though the model can represent every possible vector of purchase probabilities. The result outperforms each of several other models, including Choice Map, SCULPTRE, and Chintagunta's latent class model in terms of goodness of fit, predictive validity, and face validity for a detergent data set. Because theirs is the only market structure model to outperform the structureless Dirichlet-multinomial stochastic brand choice model, the other methods cannot claim to have recovered market structure for these data.

[1]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[2]  Wayne S. DeSarbo,et al.  Simple and Weighted Unfolding Threshold Models for the Spatial Representation of Binary Choice Data , 1986 .

[3]  Joel Levine Joint-space analysis of “pick-any” data: Analysis of choices from an unconstrained set of alternatives , 1979 .

[4]  J. Heckman,et al.  A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data , 1984 .

[5]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[6]  Bo E. Honoré,et al.  Investigating the effects of marketing variables and unobserved heterogeneity in a multinomial probit model , 1996 .

[7]  Frank M. Bass,et al.  Equilibrium Stochastic Choice and Market Penetration Theories: Derivations and Comparisons , 1976 .

[8]  Paul E. Green,et al.  Comparing Interpoint Distances in Correspondence Analysis: A Clarification , 1987 .

[9]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[10]  Wayne S. DeSarbo,et al.  Two Stochastic Multidimensional Choice Models for Marketing Research , 1990 .

[11]  Greg M. Allenby A Unified Approach to Identifying, Estimating and Testing Demand Structures with Aggregate Scanner Data , 1989 .

[12]  G. De Soete,et al.  A new stochastic ultrametric tree unfolding methodology for assessing competitive market structure and deriving market segments , 1988 .

[13]  John R. Hauser,et al.  Testing the Accuracy, Usefulness, and Significance of Probabilistic Choice Models: An Information-Theoretic Approach , 1978, Oper. Res..

[14]  Pradeep K. Chintagunta,et al.  Heterogeneous Logit Model Implications for Brand Positioning , 1994 .

[15]  W. DeSarbo,et al.  A stochastic multidimensional scaling procedure for the spatial representation of three-mode, three-way pick any/J data , 1991 .

[16]  E. Holman The relation between hierarchical and euclidean models for psychological distances , 1972 .

[17]  Terry Elrod,et al.  Internal analysis of market structure: Recent developments and future prospects , 1991 .

[18]  Steven M. Shugan Estimating Brand Positioning Maps Using Supermarket Scanning Data , 1987 .

[19]  Michael Keane,et al.  A Computationally Practical Simulation Estimator for Panel Data , 1994 .

[20]  Gary J. Russell,et al.  A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .

[21]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[22]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[23]  Berend Wierenga,et al.  Full-Information Maximum Likelihood Estimation of Brand Positioning Maps Using Supermarket Scanning Data , 1991 .

[24]  Pradeep K. Chintagunta,et al.  Estimating a Multinomial Probit Model of Brand Choice Using the Method of Simulated Moments , 1992 .

[25]  Jaewun Cho,et al.  A stochastic multidimensional scaling vector threshold model for the spatial representation of “pick any/n” data , 1989 .

[26]  J. Douglas Carroll,et al.  A quasi-nonmetric method for multidimensional scaling VIA an extended euclidean model , 1989 .

[27]  G. Casella An Introduction to Empirical Bayes Data Analysis , 1985 .

[28]  J. Eliashberg,et al.  A New Stochastic Multidimensional Unfolding Model for the Investigation of Paired Comparison Consumer Preference/Choice Data , 1987 .

[29]  Donna L. Hoffman,et al.  Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research , 1987 .

[30]  Dipak C. Jain,et al.  Estimation of Latent Class Models with Heterogeneous Choice Probabilities: An Application to Market Structuring , 1990 .

[31]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[32]  Joseph L. Zinnes,et al.  A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data , 1986 .

[33]  Terry Elrod,et al.  Choice Map: Inferring a Product-Market Map from Panel Data , 1988 .

[34]  Peter E. Rossi,et al.  An exact likelihood analysis of the multinomial probit model , 1994 .

[35]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1974 .

[36]  J. Geweke,et al.  Alternative computational approaches to inference in the multinomial probit model , 1994 .

[37]  J. Carroll,et al.  Interpoint Distance Comparisons in Correspondence Analysis , 1986 .

[38]  Terry Elrod,et al.  Inferring an ideal-point product-market map from consumer panel data , 1988 .

[39]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[40]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[41]  Lee G. Cooper Competitive Maps: The Structure Underlying Asymmetric Cross Elasticities , 1988 .

[42]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[43]  Michael P. Keane,et al.  Four essays in empirical macro and labor economics , 1990 .

[44]  V. Srinivasan,et al.  A Simultaneous Approach to Market Segmentation and Market Structuring , 1987 .

[45]  Wayne S. DeSarbo,et al.  Sculptre: A New Methodology for Deriving and Analyzing Hierarchical Product-Market Structures from Panel Data , 1990 .

[46]  N. Laird Nonparametric Maximum Likelihood Estimation of a Mixing Distribution , 1978 .

[47]  George R. Franke,et al.  Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research , 1986 .

[48]  Cornelia Dröge,et al.  Extentions of probabilistic perceptual maps with implications for competitive positioning and choice , 1990 .

[49]  C. Morris Parametric Empirical Bayes Inference: Theory and Applications , 1983 .